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I. SYMMETRIC 3-EDGE COLORING ON HYPERBOLIC {2m, 3} LATTICES

In this section, we give technical details on the systematic procedure for constructing a symmetry-compatible 3-edge coloring
for hyperbolic {p,3} lattices with even p = 2m introduced in App. A. We define all the relevant mathematical objects and
constructively prove the existence of the symmetric coloring under the given conditions.

To define an exactly solvable Kitaev model on a graph, one must first ensure the graph admits a 3-edge coloring, that is, a
coloring of edges with at most three colors such that no two edges with a common vertex have the same color. Infinite {2m, 3}
lattices are bipartite graphs, for which K&nig’s theorem ensures they are 3-edge colorable [1]. However, an arbitrary 3-edge
coloring does not generically exhibit the infinitely many reflection symmetries that are necessary to unambiguously determine
the Z, flux in each plaquette via Lieb’s lemma (see main text). Here, we utilize the space-group symmetries of the {2m, 3}
lattice to construct a 3-edge coloring! that exhibits infinitely many reflection symmetries (Sec. [ A), allowing for a complete
determination of the ground-state flux in every plaquette. We also determine a sufficient condition on the translation group I" for
the corresponding Bravais unit cell to respect those same symmetries (Sec. I B).

A. 3-edge coloring from space-group symmetries

The space group G of the infinite {2m, 3} lattice is the hyperbolic triangle group A(2, 3, 2m), an infinite discrete group defined
by the presentation

G = A(2,3,2m) = {a, b, c|a®, b*,c?, (ab)?, (bc)?, (ca)®™). (S1)

In general, one defines the triangle group A(r, ¢, p) = (a, b, c|a®, b, c?, (ab)", (bc)4, (ca)?). For % + é + 1% < 1, as is the case
here, this is the symmetry group of a regular tiling of the Poincaré disk D by hyperbolic triangles with interior angles =, g, %
The generators a, b, ¢ are reflections with respect to the sides of a reference triangle (highlighted with thick solid edges near
the center of Fig. S1), which is repeated under the action of A(2,3,2m) to tessellate the entire Poincaré disk. The composite
operations x = ab, y = bc, z = ca are respectively counterclockwise rotations by 27” =, 27”, %—"; = ;- about the vertices
(correspondingly labeled vy, vy, v;) of the reference triangle.

To construct a 3-edge coloring, we first observe that the edges of the {2m, 3} lattice (open circles in Fig. S1) are in one-to-one
correspondence with all images of the vertex v, € D under the action of G, which we simply call “x-vertices”. Formally, the set

of all x-vertices is the orbit v, - G where we define a right action of G < PSU(1, 1) on D as:

a‘z-B
-Bz+a’

z-8 geG, zeD, (S82)

which obeys (z - g) - g’ = z- (gg’). Here we have used the representation of an element g € A(2,3,2m) as an SU(1, 1) matrix
( ; f ) with |a|> — |8]> = 1. According to the orbit-stabilizer theorem, the orbit v, - G is in one-to-one correspondence with the

right coset space H\G, where H < G is the stabilizer of vy in G:
H=G, ={heG vy -h=vy}. (S3)

Geometrically, H is the set of elements of the space group G that leave v, invariant. Inspecting Fig. S1, we see that H is generated
by the reflections a and b that pass through vy, and thus inherits from G the following presentation:

H = (a, blda*, b>, (ab)?). (S4)

This is a Coxeter group isomorphic to the dihedral group D, = Z, x Z, (Klein’s Vierergruppe) of order |H| = 4.

So far, we have found that the set of all edges of the {2m, 3} lattice is in one-to-one correspondence with the elements of the
coset space H\G. To construct a 3-edge coloring, we wish to partition H\G into three colors, i.e., distinct equivalence classes
of x-vertices such that any three incident edges of the {2m, 3} lattice have different colors. For this purpose, we first construct a
subgroup K = (A, B, C) < G as the group generated by the group elements A, B, C € G defined as

A=a, B=yay '=bcacbh, C =y 'ay=cbabc. (S5)

Geometrically, A, B, C are reflections with respect to the sides of a large equilateral reference triangle with interior angles 7,
which contains six small triangles of the (2, 3, 2m) tessellation (dark shaded region in Fig. S1). One can show that A, B, C obey

1 Hyperbolic triangle group symmetries were also used to construct three-colorings for hyperbolic tilings in Ref. 2.



FIG. S1. Symmetric 3-edge coloring on the hyperbolic {2m, 3} lattice (depicted here for m = 4). The space group A(2,3,2m) of this lattice
is generated by the reflections a, b, ¢ in the sides of a right triangle, which generate rotations x = ab, y = bc, z = ca around the corners of
this triangle as well as all other space-group operations. The edges of the {2m, 3} lattice (open circles) are in one-to-one correspondence with
the edges of the dual {3, 2m} lattice, composed of equilateral triangles. Assigning a distinct color to the three sides of a reference equilateral
triangle (shaded region), and applying all possible compositions of the reflections A, B, C (dashed lines) in the sides of this triangle (i.e., all
operations in the subgroup A(m, m,m) < A(2,3,2m) generated by A, B, C), we generate a 3-edge coloring of the entire {2m, 3} lattice which
is invariant under those bond-cutting reflections. A Bravais unit cell (black octagon) preserves all the symmetries of the coloring provided that
the corresponding translation group I is a normal subgroup in both A(2, 3,2m) and A(m, m, m).

the defining relations of the hyperbolic triangle group A(m, m,m), which tiles the Poincaré disk with these equilateral triangles.
Thus, we conclude that K is in fact isomorphic to A(m, m, m):

K = A(m,m,m) = (A, B,C|A%, B>,C?, (AB)", (BC)™, (CA)™). (S6)

The equilateral triangles correspond in fact to faces of the dual {3, 2m} lattice, and the elements of K are reflections with respect
to the edges of this dual lattice. Each of those edges intersects a single x-vertex v € vy - G. Under this correspondence, the three
sides of any equilateral triangle of the dual lattice encode a set of three edges of the {2m, 3} lattice (or x-vertices) that meet at a
single point. Thus, the problem of finding a 3-edge coloring of the {2m, 3} lattice maps onto the problem of coloring the edges
of the dual {3,2m} lattice such that the three sides of each equilateral triangle have different colors. A natural solution offers
itself: color first the edges of a reference equilateral triangle, and then color the edges of all remaining equilateral triangles by
applying all elements of K. Thus, algebraically, two x-vertices v, v” € vy - G belong to the same edge color (denoted v ~ v’) if
and only if they are related by the right action of K, i.e., v’ = v - k with k € K. Writing v’ = v, - (h’g’) and v = v, - (hg) with
h,h' € Hand g,g’ € G, we see that v ~ v’ implies vy - (h'g’) = vy - (hgk) and thus #’g’ = hhgk where h € H. Redefining
W ~Yhh — h € H, this defines an equivalence relation on G, namely,

g ~ g’ iff there exists 1 € H and k € K such that hgk = g’. (S7)

If H, K are subgroups of a group G, the equivalence class HgK of g under equivalence relation (S7) is called the (H, K)-double
coset of g € G, and the set of all (H, K)-double cosets is denoted H\G /K (“G mod K mod H”) [3]:

H\G/K ={HK,Hg;K,...,HgnK}, (S8)

where g1 = 1, 22,...,gn € G are double coset representatives, asssuming here a finite number N = |H\G /K| of double cosets.
As with ordinary cosets, double cosets form a disjoint decomposition of G. Thus, we have found that the set of distinct edge
colors is in one-to-one correspondence with the elements of the double coset space H\G /K. According to our earlier geometric
argument, we expect there should be N = 3 colors, since x-vertices of different colors correspond to inequivalent sides of the
(m, m,m) equilateral triangles, i.e., sides that are not related by the action of K = A(m, m,m). We also see that each site of the



{2m, 3} lattice lies at the center of a unique equilateral (m, m, m) triangle, thus the three edges incident on this site are necessarily
assigned different colors by our construction, satisfying the conditions for 3-edge coloring.
For consistency, it thus remains to be shown that |H\G /K| = 3. To show this, we use the formula [4]

IG:Kl= > |H:HngKg™l, (S9)
HgKeH\G/K

where |G : K| denotes the index of K in G and the sum is over all double cosets in H\G /K. We make use of two mathematical
facts. First, K < G; therefore, gKg~!' = K and all summands in Eq. (S9) are equal, implying |G : K| = |H\G/K||H : HNK|.
Second, |G : K| = 6, which corresponds to each triangle of the dual lattice consisting of six white or gray Schwarz triangles of
the original lattice (Fig. S1). Combining these two facts, we have

|H\G/K| = (S10)

|H:HNK|

We now consider the intersection H N K, which is the subset of elements of the stabilizer (S4) that are also in the triangle group
A(m,m,m). Clearly, a = A € K [see Eq. (S6)] and thus the intersection H N K contains at least the Z, subgroup {1,a} < H.
Regarding the other elements {b,ab} C H, they clearly cannot be in K. First, the element b is a reflection that passes through
the equilateral reference triangle and swaps inequivalent (B and C) sides of this triangle (see Fig. S1), an operation that is
not in A(m,m,m). It follows that also ab ¢ K, as the converse would contradict b = a~'(ab) ¢ K. Thus, we find that
HnNK ={l,a} = Z,. Using Lagrange’s theorem [3], we have |H : H N K| = |H|/|H N K| = 2, thus Eq. (S10) implies:

|[H\G/K| =3, (S11)

predicting an edge coloring of the infinite {2m, 3} lattice with three colors, as expected. Thus, for any edge associated to an
x-vertex v, - g with g € G, we can determine its color algebraically by checking to which double coset in H\G /K the element g
belongs, which is easily done in gap [5].

B. Symmetric Bravais unit cells

For reciprocal-space calculations using the supercell method [6] or real-space calculations using finite clusters with periodic
boundary conditions (PBC) [7], we must construct a Bravais unit cell and the corresponding translation group I', which is a
torsion-free subgroup of the space group A(2,3,2m). In this section, I" denotes either the primitive translation group [8] or a
supercell translation group [6]. In particular, for verifications of the ground-state flux sector using the supercell method (App. D),
we would like to ensure that the chosen Bravais unit cell preserves the reflection symmetries mandated by Lieb’s lemma. In this
section, we show this is ensured if the corresponding translation group I' is a normal subgroup of both G = A(2,3,2m) and
K =A(m,m,m).

We first observe that on the Bravais unit cell associated to I', the infinite set v, - G of x-vertices is replaced by the finite set
of x-vertices contained inside the unit cell. Mathematically, the reference vertex v, should be replaced by the orbit i, = v, - T,
which is the set of all I'-translates of v,. For any g € G and y € T, the elements g and yg have the same right action on 7.
Thus, the group that acts most naturally on 7 is not G itself but rather the factor group G/T, i.e., the set of cosets I'g, which
is a finite group of order |G : I'|. (If I" is chosen as the torsion-free normal subgroup of smallest possible index in G, then it
is the primitive translation group of the {2m, 3} lattice [8], and G/T is the point group of that lattice.) For G/I" to be a group,
we require I" to be normal in G. Note that since I' < G, right and left cosets are equivalent and I'\G = G/I". Thus, the set of
x-vertices contained inside the unit cell is the orbit 7, - (G/T).

Next, we wish to describe the orbit 7, - (G/I") in purely algebraic terms using the orbit-stabilizer theorem. To do so, we must
find the stabilizer of 7, in G/I". We first define the product [3] of ' < G and H < G [Eq. (S3)] as

TH={yh:yeT,heH}={Th:heH)}. (S12)

Assuming yy,y2 € I'and hy, hy € H, since I is normal in G, we have (yh)(y2hy) = ylhlyghl‘lhlhz = ylyéhlhz with 7& el,
thus I'H < G. This infinite subgroup of G leaves 7 invariant:

Ox - (yh) = vx - (T'yh)

= vy - (AD)
=Dy, (S13)



where we have used the normality of I" and the fact that H stabilizes v,. However, we want the stabilizer of 7 in the finite group
G /T, which is the factor group I'H/T, i.e., the set of (right) cosets of I in 'H:

TH/T ={T',Tyzho,...,Typhym}
— (I, Thy,....Thy}, (S14)

assuming M cosets. This can be viewed as another generalization of coset space (i.e., one cannot directly write H/I" since I is
not a subgroup of H). That 'H/T" is a group in this case follows from the fact that I" < I'H. Indeed, first, ' ¢ 'H since ' =T"- 1
with 1 € H. Second, I' < I'H since I' is a group. Third, I is normal in I'H since it is normal in G > I'H. Using the second
isomorphism theorem [3], we have

TH/T=H/(UNH) =H=2Z,xZ,, (S15)

using the fact that ' N H = {1} since I is torsion-free and H contains only elements of finite order [Eq. (S4)]. Finally, 'H/T  is
a subgroup of G /T": it can be viewed as a set of (right) cosets of I in G, and it is a group. Thus, the stabilizer of 0, in G/I" is
I'H/T", which is a finite group isomorphic to H.

Having identified G = G/T" and H = T'H/T as the unit cell equivalents of the groups G and H for the infinite lattice, we further
define K = K/T" as the third object required to construct a symmetric 3-edge coloring on the unit cell. For K to be a group, T’
must be a normal subgroup of K = A(m, m, m). Assuming this condition, by the third isomorphism theorem [3], we have K < G
and also G/K = G /K which implies |G : K| = |G : K| = 6. Thus, applying Eq. (S9) to the groups G, A, and K, we have
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|H\G/K|=m. (S16)

Next, we compute HnK. Using the correspondence theorem [9], since 'H,K < G and " <« T'H, K, we have
HNnK=TH/T)n(K/T)=(THNK)/T. (S17)

Finally, we invoke Dedekind’s modular law [3], which implies that ’THNK = I'(HNK). Using once more the second isomorphism
theorem, we have

AHNnK=THNK))T=(HNK)/TNHNK)=HNK)/{1}=HNK = Z,. (S518)
Using again Lagrange’s theorem, we have |H : HN K| = |H|/|HN K| = |H|/|H N K| = 2, thus
IA\G/K| =3, (S19)

giving us again a (symmetric) 3-edge coloring, but this time on a finite unit cell.

Under the condition I" <« G, K, the unit cell is manifestly compatible with the reflection symmetries relevant for Lieb’s lemma,
encoded in K. Indeed, on such a symmetric unit cell, the space group G descends to the quotient G = G/T", and the reflection
symmetries K <t G descend to the quotient K = K/I" < G. An example of symmetric unit cell is provided by the {8, 8} unit cell
on the {8, 3} lattice (black octagon in Fig. S1). In general, given any finite-index translation group I' < G not necessarily normal
in K, one can always construct a symmetry-compatible translation group via I = I' N K. The resulting I'” also has finite index
in G (and K), implying that the corresponding unit cell contains finitely many sites.

II. REFLECTION SYMMETRY AND THE THREE-SPIN TERM

In this section, we clarify our notation for the three-spin term in Eq. (1) and demonstrate that our choice of coefficient ensures
that the reflection-symmetries of the coloring are preserved.
The three-spin term in Eq. (1) in the Letter contains the totally antisymmetric tensor €,3, (Which satisfies £y, = +1):

P =K Y capifolol. (520)

[lmn]uﬁy

The two sublattices (filled/empty disks in Fig. 1a in the Letter and in Fig. S2) of the infinite {p, 3} hyperbolic lattice are related by
reflection symmetry. This manifests as filled (empty) sites always lying in white (gray) Schwarz triangles of A(p/2, p/2, p/2).
Our symmetric coloring is, by construction, compatible with A(p /2, p/2, p/2) which implies that the colors of the bonds around
sites from different sublattices are related to each other by an odd number of reflections and are thus oriented oppositely, see
Fig. S1.



FIG. S2. Tllustration of the triplets [Imn] involved in the definition of the K-term on the {8, 3} lattice with symmetric coloring. A

+
xXyz

+
afy
three-spin interaction is defined by a triplet fn,m,l) of sites, where the superscript “+” in the label [/mn]
(positive) orientation around the octagonal plaquette the path n — m — [ is part of. This is illustrated with the sites n,m, ! to the left of
the blue dashed mirror line. In the Majorana representation, this becomes a next-nearest-neighbor hopping (dashed black arrow) from 7 to /,
inheriting the counterclockwise orientation with respect to going around the center of the plaquette. The corresponding bond operators &,
(z-bond from n to m) and iy, (x-bond from m to [) whose eigenvalues determine the hopping amplitude are indicated as bold solid arrows.

denotes counterclockwise

Note that the reflected triplet is indeed oriented oppositely, i.e., clockwise, justifying the label [//m’n’]% yz-

We now argue that Eq. (S20) is reflection-symmetric. Any reflection operator 9 acts on the spin operators as 1%';’19‘1 = —&ﬁ,

where j” is the reflected partner of j and we use the fact that the coloring is invariant under reflections. Considering a single
term in H, associated with the triplet [/mn] ,py, we first note that the reflected triplet has opposite orientation: [/'m’n’] 5y 35
can be seen in Fig. S2. Then,
N e nB Ay A 8.
ﬁsaﬁyal“oflof,’ﬁ = —86,5),0'170'&,0'3,,

= £y3a0,00,62, (S21)

where we used the antisymmetry of €,3,, the fact that the spin operators on different sites commute, and rearranged the operators
such that they correspond to the triplet [n'm’l ’];ﬁ ., oriented as it appears in the sum in Eq. (S20). Thus, we arrive at

HH " = Hy. (S22)

For the coloring used in Ref. 10, the factor £,p, is unnecessary, because for any positively oriented triplet [/mn]?, 5y> EaBy

always takes the same value. We also note that, although reminiscent of the scalar spin chiralities ¥y, = 6+ (6, X 6,) [11], the
operators appearing in Eq. (S20) are not the same as y;,,, because there is no free sum over «, 3, y; rather, the spin components
are fixed by the colors «, 8,y of the bonds incident on [, m,n. Therefore, just like the two-spin term in the Hamiltonian, the
three-spin term (S20) completely breaks the SU(2) spin rotation symmetry.

III. MAJORANA REPRESENTATION OF THE HAMILTONIAN

In this section, we derive the Majorana representation, i.e., Eq. (2) in the Letter, for the Hamiltonian given in Eq. (1):

H== > Ja0f0f —K Y capy0foho. (S23)

(JF)a [imnTh s,
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We follow Ref. 10 and introduce the Majorana fermions 13;.’, a € {x,y,z}, and ¢;, at each site j, such that (’3-;’ = il;;’é 7. Further,
for the nearest-neighbor bond (j, k)., we define the bond variable # ; = il;}’f;;:. Recall that this extends the Hilbert space and

comes with the gauge transformation operators D j= 13;? B; 137 ¢; that define the physical subspace as their common +1 eigenspace.
The first term in the Hamiltonian then becomes

Hy== Y Jalibyes) (ibge)

(ko
= > Jaltjic;éx, (S24)
(o

and the second

=K Y capy (ibf) (i6hém) Bicic

+
aBy

+
aBy

_ rAB LY A A A NN
=K Z EaBybmbmbimCmlimiimnic | éy
+

[lmn]aﬁy

_ XY LZ A A A A
=K Z bbb CnliimmniCiCp
+

[Imn] By

N

-K Z Do limiimnié1én. (S25)

[lmn]:’lﬁy

Since D, = +1 in the physical subspace, we can drop it, such that we arrive at

H= D Jalijiliéx+K > limlmnicién. (S26)
(ko [Imn]? .
This can be written compactly as
N i A
H = 7 AjCjly, (S27)
ok
with
. 2J o ik for {j, k)a>
= {+2L;<Zk A, <J’lk>: (528)
2K iy, for [jIk]G, .
where the additional factor of 1/2 compensates the double counting of each bond and triplet. Note that Ay j= -A Jjk» because
fAkj = —iijx and [klj];—'lﬁa £ [jlk]zﬁy, see also Fig. S2.

As discussed in the Letter, in a fixed flux sector, we can replace the bond operators i ;; by their expectation values u ;i and
thus A ik by the skew-symmetric real matrix A ji, resulting in the Hamiltonian

N i o
H= ;;Ajkcjck, (S29)

acting only on the fermionic degrees of freedom in the specified flux sector. Note that A in Eq. (S29) is gauge dependent.
Projection to the physical (gauge-invariant) subspace is important for exact computations of quantities in the original spin model
like the many-body ground-state energy and the Z, vortex gap, especially in a finite system with periodic boundary conditions [12].



However, as in earlier work [10, 13], we focus here only on the fermionic excitation spectrum in the thermodynamic limit, which
is correctly given by the (positive) eigenvalues of the Hermitian matrix H = iA in a fixed flux sector. We further make the
simplifying assumption that the K = 0 flux sector determined by Lieb’s lemma persists for K # 0, which is correct for infinitesimal
K but ignores the possibility of flux phase transitions at finite K. The assumption is consistent with our results in App. D, where
we find that among all the translation-invariant flux configurations with zero net flux per primitive cell, the homogeneous m-flux
configuration has lowest energy even for relatively large K. We leave an analysis of the stability of the m-flux sector for future
work.

We finally comment on time-reversal symmetry. The antiunitary time-reversal operator §~ acts on the spin operators as

‘f'é‘j‘." 7= —(3';7 , thus the three-spin term in Eq. (S20) is odd under time reversal:
THeT ' = —Hx. (S30)

In the Majorana representation, Eq. (S29), it is useful to consider time reversal composed with a gauge transformation to
compensate for the change in sign of i, = 113;’13,‘(’ due to the antiunitary nature of 7~ [10]. The corresponding symmetry 7,
which leaves 7 i invariant but flips the sign of ¢; on one of the sublattices, enforces couplings only between the two sublattices.
Correspondingly, K #0 turns on a coupling within each sublattice, analogous to the next-nearest neighbor hopping in the Haldane
model [14], suggesting a non-vanishing Chern number (see Sec. IX).

IV. HYPERBOLIC BAND THEORY FOR MAJORANA HAMILTONIANS

In this section, we derive Eqgs. (B6) and (B7), extending the concept of hyperbolic band theory and hyperbolic Bloch
Hamiltonians [7, 15] including the supercell method [6] to generic quadratic Majorana Hamiltonians of the form of Eq. (S29),
ie.,

N i A
A= jZkA,kc,ck, (S31)

where A is a skew-symmetric real matrix, AT = —A, and {€j, ¢k} =26 .

Following the ideas in Ref. 6, we assume H in Eq. (S31) to be defined on a large (but finite) cluster of a hyperbolic lattice
with periodic boundary conditions (PBC cluster). At the very end, we formally take the limit [16] of an infinite PBC cluster,
recovering a description of the infinite lattice. The large PBC cluster is defined [7] by a normal subgroup I'pgc of the full
translation group I' and of the triangle group A. Further, we assume a division of the PBC cluster into N translated copies of a
(super-)cell, characterized by I'sc < A, T'sc < T, such that I'pgc < I'.. These copies are labeled by the corresponding translations
from the supercell at the origin to the copy, modulo translations in I'pgc. Thus, the different copies of supercells are labeled by
cosets 7 € G = I's./I'pgc. This, in turn, allows us to enumerate all sites in the PBC cluster as tuples (7, j), where j now labels
the corresponding Wyckoff position in the supercell rather than the site in the PBC cluster; there are M = |A : T'y¢| such Wyckoff
positions. Writing ¢(;,, j) = ¢y, j, the Hamiltonian can be written as

. M
N 1 R N
H=7 D D AWk ik (832)

n.,n'eG j,k=1

By translation invariance, the skew-symmetric matrix satisfies A, ), (.k) = Ajk (’n~"), i.e., it depends only on the relative
translation y = '~ € G between the two copies of the supercell and not their absolute position. Recognizing that ’ = yn, we

arrive at

~ i . .
H=7 D0 D Aneym éni (S33)

17,v€G j.k

where j, k implicitly run from 1 to M.

To rewrite Eq. (S33) in hyperbolic reciprocal space, we use the formalism recently developed in Ref. 17, which defines a Fourier
transform on PBC clusters. Let f(y) be a function (potentially operator-valued) on G and denote the irreducible representations
of G by DK)_ Recall that because G is generally non-Abelian, DX) can be matrix valued and we denote its dimension by dg;
K takes the role of momentum in hyperbolic reciprocal space. Then, the Fourier transform is defined as

1 (K) 1y (K) 2
=— E Vax %D, , S34
fy) ‘/NK,,W K Ju u (¥) (S34a)
k) _ 1 Z [ £ ()D& S34b
Hv \/N e Kf(')/) Vi (7), ( )



where N = |G| = |I'ppc : I'sc|, K runs over all irreducible representations and g, v run from 1 to dg. Here, the unitary matrix

D( )(y) plays a role akin to the usual phase factor /X ® on Euclidean lattices.

This allows us to define the following reciprocal-space representation aALIi) j for the Majorana operators ¢, ;,

i g i

K,u,v
a® [d
Noomi ke DYy (), (835b)
Auv,j = 7; "ﬂ
which satisfy canonical anticommutation relations:
A(K) A(K) T (K) (K")
{a,uv,j’a;/v’,k } - Z D (U)Dvy (77) { UJ’CU k}
n'eG

= Ssji Y. Dy DY) ()’
neG

= OkK Ouu Oy 0 ks (S36)

where we used {6,7 J, 6,7',;{} = 20,701 as well as Schur’s orthogonality relation. However, the fact that &t

UNj
(K) ~(K) T
v,k

= ¢y,; implies

that @ a, and a are not independent:

0 - e 3
%k Kén, DYy W)
w 2N neG

Vdkeéy ;DN ()
\/m’;(; IJ

_ A(-K)
=4, (S37)
where D(~K) is the representation conjugate to DK). Thus, self-conjugate (real) representations D(-K) = D) if any,

generalize to hyperbolic lattices the notion of time-reversal invariant momenta.
Rewriting Eq. (S33), we thus find

T ’ *
F=o S S aum Y Vaxa®, pE m) 2, NVddy, DU )

2N

1n,veG j,k K,u,v K’,u' v
K) T, K’) K K K
Z DAny) Y Vdxdal), k) ZD( LIS OTICI
yeG Jj.k K,u,v neG
K',u' v

where we used that D) (yn) = DK (y)D ) (). Using Schur’s orthogonality relation, this becomes

T,
=—ZZ Ap(y) D) Vdxdgall), LKV)kD(K)(y) Ok Oy

yeG j,k K.,u,v
K',u' v

Z > AuDER () a® ! ),

K/lﬂVJk)/GG

22 D D AN kA/(lKv)j'd;(sz)k’ (S38)

u,vv'ojk

where in the last step, we defined the reciprocal-space representation of the matrix A:

A = D ARDE) (). (S39)
yeG
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Since A(7y) is skew-symmetric, we can consider the Hermitian matrix iA(7y), such that

H(K) =iAK) = Z iA(y) ® D) (), (S40)
yeG

is a Bloch Hamiltonian as defined in Ref. 6. Let U) be the unitary matrix diagonalizing H(K), such that

Hy jo ik (K) = D (UE), s (KOUE), (S41)
A1
and define
AK) _ (K)  A(K)
dﬂ/l,l - Z U/l,l;v,ja,uv,j’ (542)
v.J
which are again canonically normalized, i.e., {Ci;(g,)l’ j/(f/;l),mT} = Ogk'Ouuw O 01m. This diagonalizes the Hamiltonian in
Eq. (S38):
~ 1 T T
_ ~(K) (K) ) (K)  A(K)
H = E Z Z Z v, v )V’J;’l’lg’l’lU/l,l;v’,kapv’,k
K uv,v,Aj,k,l
1 A(K) T A(K)
=3 O e d)d), (543)
K,A,u,l
Note that Eq. (S40) is Hermitian, H(K)' = H(K) and thus satisfies
H(K)T =H(K)" == ) iA(y) @ DX (y)" = ~H(-K), (S44)
yeG

where we used that DK) (y)" = D(=K)(y). Since H(K) and H(K) have the same spectrum, it is always possible to choose
appropriate bases (for the indices 4, /) in the K and —K sectors, such that

e 1(=K) = —g1(K). (545)
The above allows us to rewrite the sum in Eq. (S43) by splitting it according to the sign of £,,;(K):
vl 36 T g0y 1 3K T 3(K)
H=7 > en)d s, A+ 3 > enk)d ), dl), (S46)
K, A,u,l K., A,u,l
£2,1(K)>0 £2,1(K)<0

In the second term, we rewrite the sum over K as a sum over K’ = —K, such that

! )t gy NdKD T g=KD
- Z 6/U(K)d,u/l,l d == Z e1(-K )dﬂ,u d”/u

puAl
2 KTl 2 K’ A,u,l
EA’I(K)<O g/u(K’)>0
l ~K') ~K' T
. Z SA,I(K')d,(M,z)d,(ul,l)
K’ a,u,l
£2.1(K")>0
1 , ~NKDYT K
=2 DT et (dX) A% ). (S47)
K’,A,u,l
£4,1(K")>0

Substituting back into Eq. (S46), we find

L1 k) T oak) ] JK) T (K)
H= 2 Z ea1(K)d g dyay + 2 Z £.1(K) (dﬂ/”l Durt = 1)

K,A,u,l K.,A,u,l
e11(K)>0 £2,1(K)>0
~K) T A 1
= Z e(K) (dfjj}l dfl’j}l-z). (S48)
K,A,u,l
S/U(K)>0

Equation (S48) implies that the spectrum of Eq. (S31) can be found by diagonalizing the Bloch Hamiltonian Eq. (S40) for
different K. However, since we are dealing with hyperbolic lattices, K labels not simply ordinary Bloch states, but also non-
Abelian Bloch states transforming in higher-dimensional irreducible representations of the translation group. In order to deal
with those, we apply the supercell method [6] as discussed in the next section.
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V. COMPUTATIONS BASED ON THE SUPERCELL METHOD

The supercell method gives access to non-Abelian Bloch states on hyperbolic lattices by considering Abelian Bloch states on
a sequence of supercells increasing in size [6]. In the context of our work, we apply the method to the Bloch Hamiltonian given
in Eq. (S40). In this section, we provide all the necessary details on the computations performed to obtain the data presented in
the Letter. In Sec. V A, we specify the particular supercell-sequence that we use, the detailed parameters used for the random
sampling in the Abelian Brillouin zones and for constructing the density of states. This is followed by Sec. V B with explicit
expressions for the matrices defining the model. Finally in Sec. V C, we describe the maximum-likelihood fitting algorithm
employed in the extrapolation of the spectral gap as described in App. C.

A. Supercell sequence and state sampling
Supercell sequence

We consider the hyperbolic Kitaev model on the {8,3} lattice which has symmetry group A(2,3,8), see Eq. (S1). The
symmetric 3-edge coloring discussed in Sec. I, breaks that symmetry down to the normal subgroup A(4,4,4) < A(2,3,8), see
Figs. S1 and 1a. The primitive unit cell of the model is thus given by the torsion-free normal subgroup I' <t A(4,4,4),A(2,3,8)
of lowest index. Such normal subgroups are tabulated, e.g., in Ref. 18, in terms of the quotients of the proper triangle group
A", i.e., A*/T labeled in the form Tg.n. Here, g is the genus of the Riemann surface the group A acts on, i.e., on which the
corresponding cell can be embedded with periodic boundary conditions, and » is a running index for given g. In our case, we
find that I corresponds to the quotient T2.1 which, given in terms of the generators of A(2, 3, 8), is

A(2,3,8)/T = A(2,3,8)/Tras = (a,b,c

a*,b*, c*, x%,y, 28, zyxz(zy) T xz) (S49)

with x = ab, y = bc, z = ca. Using the implementation of this library of normal subgroups in the HyperCELLs package [19],
we compute the kernel of the quotient homomorphism, which gives the corresponding translation group with the simplified
presentation

U =Tro1 = (y1,72, 73, va| v1v3 ' v3vs vy vays ya) (S50)

and

1

yi =2 lyzty (S51)

In caPp [5], we can easily check that I" is a subgroup of (and thus normal in) A(4,4,4). Indeed, with A = a, B = yay‘l, and
C = y‘lay the generators of A(4,4,4) and the corresponding rotations X = AB,Y = BC,and Z = CA, y;,i = 1,2,3,4, can be
written as

yi=2Y7'X, (S52a)
v =2ZYX !, (S52b)
y3=Y"'XZ, (S52¢)
ya=YX1Z, (S52d)

implying y; € A(4,4,4).
To apply the supercell method, we construct a sequence of normal translation subgroups '™ <« A(2,3,8), T+ 4 (™)
with T = I" using HyperCELLs [19]. In terms of their quotient groups A(2, 3, 8) /"™ they are given as

A(2,3,8)/Trs.1 = {(a,b,cla®, b*, 2, x%, v, 28 2yz Ixzy Ixy™1272x), (S53a)
A(2,3,8)/Tri72 = {a, b, c|a® b2, 5%, y3, 28, (22yx) 2 (zy7 27 1x)?) (S53b)
A(2,3,8)/Tr33.1 = {(a, b, | a’, b, ¢ x*,y°, ZS,xzz(zyx)Bzzyzz_zxy_lz_2> , (S53c¢)

A(2,3,8)/Trsz.intes.t = (@, b, c|a®, b%, 2 x% y3, 28, (xzy ™' 272) 2 (xPyz )2 (22y ' 272 (xdyz)?). (S53d)

The first three were obtained from the library of quotients [18, 19], while the fourth was constructed using the procedure of
intersections of normal subgroups [20, 21]. In particular, I't33.1n165.1 = I'33.1 N Tres.1 with A(2, 3, 8) /T'res.1 from Ref. 18. The
resulting supercell has genus 129 and as such corresponds to 128 copies of the primitive cell resulting in 2048 sites and 768
plaquettes. The connected and symmetric (super)cells for m = 1,2, 3, 4 are illustrated in Fig. S3.
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FIG. S3. Supercell sequence used in the computations and defined by the quotients in Eqs. (S49) and (S53): (a) primitive cell T2.1 with 16
sites and 6 plaquettes; (b) first supercell T5.1 with 64 sites and 24 plaquettes; (c) second supercell T17.2 with 256 sites and 96 plaquettes; (d)
third supercell T33.1 with 512 sites and 192 plaquettes. The largest supercell (see text) used in the computations is not shown.

Sampling of Abelian Bloch states

Given that ") < T' < A(4,4,4) < A(2,3,8) and '™ < A(2,3,8), we immediately find that [ < A(4, 4, 4), as required
for compatibility with the symmetric coloring, cf. Sec. I B. Using the HyPERBLOCH package [22], we then extend the tight-binding
model, defined by Eq. (S28), with a choice of gauge u = {u;x} on the primitive cell to the supercells defined by Eq. (S53),
following Eq. (S33). Next, we define the corresponding Abelian Bloch Hamiltonian H (k"), Eq. (S40), for the one-dimensional

k(

n .7 (n) . . .
irreducible representations p&™) (yj(.")) =¢'i  defined on the generators yj(.") of '™ Finally, we diagonalize H (k") for

10° (in some cases 10°) randomly sampled momenta k") in the Abelian Brillouin zone ng("), where g is the genus of the
surface on which the corresponding supercell is compactified. Based on the resulting sample of eigenvalues, we compute the
ground-state energy, density of states, and the spectral gap as detailed below.

While the Hamiltonian in Eq. (S29) is gauge dependent through the choice of gauge u = {u j } in the definition of the matrix A
according to Eq. (S28), the single-particle energies, i.e., the eigenvalues of 1A, are explicitly gauge-invariant. They only depend
on the corresponding flux sector. However, as we comment in the Letter, for a Hamiltonian defined on a PBC cluster with F
plaquettes, u is not fully determined by the F — 1 independent fluxes through the plaquettes. Instead, the expectation values
of the Wilson loop operators along the 2g non-contractible loops need to be specified too; we call them the global fluxes. The
differences in the eigenvalues for different global flux configurations are finite-size effects and vanish in the thermodynamic limit.

On the other hand, hyperbolic band theory explicitly describes eigenstates and energies on the infinite lattice, where there are
no global fluxes. Consequently, the flux sector is uniquely determined by the ' — 1 fluxes through the plaquettes in the unit
cell and the single-particle energies €, ;(K) only depend on {WP}II;;II. Operationally, however, the supercell method considers
Abelian Bloch Hamiltonians H (k) defined on finite clusters with particular (twisted) boundary conditions specified by k. To
reconcile these two perspectives, note that each global flux precisely corresponds to the shift of momentum k by 7 in a particular
direction (there are 2g directions in the Abelian Brillouin zone). The global fluxes thus only rearrange the blocks H (k) without
affecting the full spectrum.

Density of states

The density of states is obtained by constructing a histogram from the computed eigenvalues. Here, we use an energy-bin-width
of 0.002J when sampling 103 momenta (applicable to most computations) and 0.0002 for 10® momenta (when higher resolution
was required for the data presented in Fig. S10a). When plotting the density of states, we smooth the data with a moving average
with a window of five data points, resulting in an effective energy resolution of 0.01J ~ 0.0033 x 3J and 0.001J ~ 0.00033 x 3J,
respectively. Some example data at different points in the phase diagram are shown in Sec. VII B; note that only states with £ >0
are physical excitations. The convergence of the density of states obtained from the supercell method is studied in Ref. 6.

B. Model definition

We define the hyperbolic Kitaev model on the primitive cell and then use Eq. (S33) to extend the definition to any of the
supercells (or a compatible PBC cluster or even an OBC flake, see Sec. VI). First, we construct the primitive cell defined by I'r; ;;
its symmetry group is G = A(2,3,8)/T'12.1. Following the labeling convention of Ref. 6, the set V of sites of the {8, 3} lattice
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(a) Homogeneous n-flux configuration (b) Homogeneous 0-flux configuration

FIG. S4. Gauge choices and site ordering from the homogeneous (a) 7- and (b) 0-flux configurations. The choice of gauge, {u ;1 } is indicated
by arrows pointing from k to j such that u ;i = +1. This allows us to easily read off the corresponding eigenvalues of the plaquette operators
Wp by going around the plaquette counterclockwise and counting the number of arrows that do not follow that orientation. The numbers by
the sites indicate their index in our choice of basis for Eq. (S54). Finally, the translations associated with the boundaries are shown in terms of
the translation generators y;, j = 1,2,3,4.

is given by the right coset G, \G, where G, = (b, c‘ b2, 2, (bc)3> is the stabilizer of the vertex v, of the reference triangle,
cf. Fig. S1. Analogously, the set E of edges is given by G, \G, where G,, = H = (a, b|a?, b%, (ab)?) is the stabilizer of the
vertex vy of the reference triangle. Colors can then be assigned to the edges through partitioning of H\G into the double cosets,
H\G/K with K = A(4,4,4), following Eq. (S8).

Second, we fix a gauge u = {u}(; x)er on the set of edges that is compatible with a chosen flux configuration {Wp}pcr,
where F is the set of faces, G, \G. This results in a system of |F| - 1 = 5 equations with | E| = 24 unknowns, for which we select
an arbitrary solution. Our choices for the homogeneous 0- and m-flux configurations are depicted in Fig. S4. Note that while
there are 2/V1=1 = 215 gauge-equivalent choices of u for a given flux configuration, the fact that we do not specify the 2g = 4
global fluxes implies that the above system of equations has 2!° possible solutions and the resulting u will not be equivalent for
finite systems. However, as discussed above, the 2* configurations of global fluxes are equivalent in the thermodynamic limit,
which we are studying explicitly with the supercell method.

Third, we construct A(7y), cf. Eq. (S28) for our choice of u. In the basis indicated by the numbering of the sites in Fig. S4, we
find

Ak (1) Ay(1)
A1) = , 554
M (—AJ(D ~Ag(1) (554)
with
. =Je=J, 0 0 0 0 0 0 -1 1 -1 -10 00
Je 0 0 J —J, 0 0 0 1 0-10 0 0 1 1
~Jy, 0.0 0 0 0 0 0 110000 00
o 0 0 0o o -s 1100 0 -1-1-10
AM=lo 25,0 0o o o o of AMW=Kl1 9 0 1 0 0 0of (854b)
0 0 0 0 0 0 -J 0 000 100 10
0 0 0 —Jy 0 —Jy J. 0 0 -1 0 1 0101
0 0 0 J, 0 0 0 0 0 -1 00 0 010
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and
0 0 0 0 0 0 00 0 0 0 000 O 0
0 0 0 0O Ko Kéjg 00 0 0O 0 000 0O 0
0 0 0 K&y O 0 00 0 0 0 000 0 —-J/dsu
0 0 0 0 0 0O 00 0 0 0 000 O 0O
0 0 0 0 0 0 00 0 0 0 000 0 0
~K6j1 0 0 0 0 0 00 0 0 Jb6;5 000 0 0
00 0 K6y O Ké O 00 O O O 000 O 0
K6, 0 0 -K&z O 0 00 0 0 —-Jy6,000 0 -6
APD=l 0" 0 0 07 0 0 00 0 0 0 000 0 -Koa.| S
0 0 0 0 0 0 00 0 0 0 000 O 0
0 0 0 0 0 0 00 0 0 0 000 O 0
0 0 0 0 0 0 00 0 0 Kép 000 0 —Kdj
0 0 0 0 —J.0;3 Jx6;4 00 0 Kéj3 0 000 Ksjgy O
0 0-J.64 0 Jop 0 00KS;; Kip 0O 000 0 0
0 0 0 0 0 0 00 0 0 -K5;000 0 0
0 0 0 0 0 0 00 0 0O 0 000 0 0
with j = 1,2,3,4,
00 0 0 0 0 0 0 00 O 0O O O 0 O
00 0 0 0O 0 0 0 00 O O O O 0 O
00 0 O0Kss 0 0 0 00 0O 0 O O 0 0
00 0 0 0 0 0 0 00 0O O O O 0 O
00 0 0 0 K60 0 00 0 0O 0 0 0 O
00 0 0 0 O 0K§;00 0 0 0O 0 0 0
00 0 0 0O 0 0 0 00 0O 0O O 0 0 O
. |l00-k630 0 0 0 0 00 0O O O O O O
AVYi)=loo 0 0 0 0 0 0 00 0 0 0O 0 0 0 | (854d)
00 0 0 0O 0 0 0 00 O O O O 0 O
00 0 0 0 0 0 0 00 0 0O 0O 0 0-Kdj
00 0 0 0 0 0 0 00 0O O O 0 0 O
00 0 0 0 0 0 0 00Ksu0 O 0 0 0
00 0 0 0 0 0 0 00 O 0Ksp 0 0 0
00 0 0 0 0 0 0 00 0O O O O 0 O
00 0 0 0 0 0 0 00 0 O 0 KégO O
with j =1,2,...,8 and yay; = yi’l. The remaining twelve matrices are defined via
Aty ) =-AM". (S54e)

Note that the actual calculations [23] have been performed in the gauge obtained from the above choice by performing a single
gauge transformation on site 16.

C. Fitting the integrated density of states

To fit the dependence of the integrated density of states, Eq. (C10), N(E,N) = fOE dE’ p(E’, N), on the supercell-size N

according to the linearized model given in Eq. (C11), N(E,N) = No(E) + 2 1\’,5 ) care must be taken with the statistics. This is
due to the non-normal distribution of the estimates for A obtained from sampling.

We assume the Ny randomly sampled states, characterized by energy E, to be independent samples from the probability
distribution p(E). Then, the probability of finding a state in the energy range [0, E] is precisely N'(E). The probability of
observing m of them within an energy window [0, E] is then given by the binomial distribution

P(m) = (]:’;)N(Er"(l — N(E))Ns—m, (S55)

with estimator for its mean N/ (E) = % where m(E) is the number of numerically observed states in the window. The best fit

to the model is thus found using maximum-likelihood estimation, which we have done using the GeneralizedLinearModelFit
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function in MATHEMATICA With the exponential family option set to "QuasilLikelihood", the variance function to y +— p(1—p)
(giving the variance as a function of the mean), the response domain to [0, 1], and the link function to the identity. The result of
such a fit for several choices of energy is shown in Fig. C6 in App. C in the Letter.

VI. COMPUTATIONS BASED ON THE CONTINUED-FRACTION METHOD

The supercell method discussed in Sec. V provides an efficient way to study hyperbolic lattices directly in the thermodynamic
limit. In practice, it is useful, because relatively small cutoffs on the supercell sequence and the momentum sampling produce
good approximations. However, near band edges and band degeneracies, the presence of such cutoffs can lead to the sampling
of Bloch states that are strongly suppressed in the thermodynamic limit [6, 20]. Thus, it is helpful to have an alternative method
to verify our results. In this section, we provide details on the computation of the single-particle density of states (DOS) using
the continued fraction method [24, 25], which was applied recently to nearest-neighbor hyperbolic tight-binding models [26]. To
the difference of Ref. 26, which only considered clusters with open boundary conditions (OBC), here we consider clusters with
either OBC (Sec. VI A) or periodic boundary conditions (PBC, Sec. VI B). We provide details of the continued-fraction method
itself in Sec. VIC, which also introduces modifications to the algorithm of Ref. 26 that are needed to capture the presence of
energy gaps [27, 28].

A. Clusters with open boundary conditions (OBC)

To construct large hyperbolic lattices with OBC, we use the procedure detailed in Appendix A of Ref. 29. We use the fact that
the {8, 3} lattice can be viewed as an {8, 8} Bravais lattice with a 16-site basis [29]. In other words, the {8, 3} lattice can be
generated by acting on a reference unit cell containing 16 sites (black and white dots in Fig. 1a in the Letter) with all elements y of
the Fuchsian translation group I of the {8, 8} lattice. The latter group is a finitely presented infinite group with the presentation
already given in Eq. (S50),

T = (1, y2, 73 valyiys sy v o ya). (S56)

The elements y € I" are expressed as words in the generators y1, . . ., ¥4, ¥| L. y;l . To generate a finite, rotationally symmetric
flake centered around the reference unit cell, we apply to this unit cell all words in I" of length up to a maximal length p. To
eliminate redundancy between different words that correspond to the same element of I, we work with the PSU(1, 1) matrix
representation of the generators [15], which gives a faithful representation of I'. This also allows us to compute the complex
coordinate z,, = y(0) in the Poincaré disk D of the center of a unit cell translated by y from the reference cell centered at z = 0.
We enumerate all words of length up to p = 8, corresponding to a finite OBC cluster with N = 7579465 unit cells and thus
V = 16N = 121 271 440 sites.

Once all distinct translations y and corresponding {8, 8} cell coordinates z, have been identified, to construct the Kitaev
model on an OBC cluster, we also need to identify nearest-neighbor (NN) and next-nearest-neighbor (NNN) pairs. (Once those
are known, NN and NNN pairs on the {8, 3} lattice are easily identified.) The hyperbolic distance d(z, z’) between two points
7,7 € D, measured in units of the radius of curvature of D, is defined by [30]

2|z - 7|?

coshd(z,7’) =1+ )
(=12 =z’

(S57)

Using the PSU(1, 1) matrix representation of the generators, the NN and NNN distances on the {8, 8} lattice are found to be

coshdnn = 5+4V2,  coshdany = 17 + 12V2. (S58)

For each pair z,, z,+ of cell coordinates on the flake, we first compute d(z,,z,-) and find the NN and NNN pairs that satisty
Eq. (S58) within numerical error. Second, for each such pair, we identify the Fuchsian translation y 'y’ that relates the two cells,
which is either a single generator (for a NN pair) or a product of two generators (for a NNN pair). From the knowledge of those
translations, we construct the 16N X 16N matrix A j; appearing in the Majorana Hamiltonian (S29).

B. Clusters with periodic boundary conditions (PBC)

PBC clusters correspond to finite hyperbolic lattices where a certain subset of translations within the primitive translation
group I are set to the identity, i.e., unit cells differing by those translations are identified, producing a closed lattice without
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FIG. S5. Continued-fraction coeflicients b, computed on finite hyperbolic lattices for PBC with V = 209 018 880 sites (left panel); and OBC
with V = 121271 440 sites (right panel). Here, Jx = Jy, = 1 and K = 0. In the isotropic limit (J; = 1), the odd and even coefficients converge
to approximately the same value for n > 15, indicative of a gapless spectrum. In OBC, the large oscillations for n > 30 indicate finite-size
artefacts from danglings bonds at the boundary, and we estimate b, by averaging over the interval n € [15,20]. In PBC, we estimate b by
averaging over the interval n € [30, 60]. Over those respective intervals, for J; # 1, the odd and even coefficients converge to a different value,
indicative of a single spectral gap.

boundaries. Algebraically, a PBC cluster with N unit cells is defined by a choice of normal subgroup I'” of T" with (finite) index
N, and the unit cells on the cluster are labeled by the cosets I'/T”. Translation symmetry on the finite cluster can be viewed as
the action of the finite group I'/T” on itself via the (left-)regular representation [7]. For our calculations on the {8, 3} lattice,
we generate a PBC cluster with N = 13063 680 unit cells (V = 16N = 209 018 880 sites) by utilizing the method described
in the Supplemental Material of Ref. 20. In this method, we compute I" as the intersection of several normal subgroups I"()
of index |I" : T¥| < 25, previously obtained using the low-index normal subgroups procedure [7]. To mitigate finite-size
effects, we impose a 7 flux in each plaquette—given that this is the lowest-energy configuration in the thermodynamic limit (see
main text)—even though the particular PBC cluster we work with does not respect all bond-cutting symmetries (i.e., [’ is not
constructed as a normal subgroup of G or K).
For both OBC and PBC clusters, the 16 X 16 submatrices appearing in A j; are given explicitly in Eq. (S54).

C. The continued-fraction method

The single-particle spectrum is controlled by the eigenvalues of the Hermitian antisymmetric matrix H i = iA i in Eq. (529).
From the single-particle Green’s function in the site basis {|i)},

Gij(2) = (il(z— H)7']j), (S59)

we obtain the local DOS on site i, p;(E) = —% Im G;; (E +i0%). For an infinite {p, ¢} lattice, because of lattice symmetries, the

local DOS is the same on every site, and we obtain the (global) DOS as
1
p(E) = == ImGoo(E +i0%), (560)
g

computed on some reference site i = 0. In practice, H is the Hamiltonian matrix for a finite cluster with periodic boundary
conditions (PBC) or open boundary conditions (OBC), and we choose the reference site to be at the center of the cluster, to
mitigate finite-size artefacts introduced by the boundary conditions.

The continued fraction method is a Lanczos-type method which, starting from a normalized state vector |1} = |0) localized
on the reference site, constructs an entire new basis |} via a recursion relation,

[n+1} = Hn} —ay|n} = by—1ln—-1}, n=1,2,3,..., (Se61)
with coefficients a,, and b,, given as

_ {n|H|n} _{n+1n+1}

pn=————, by=———— n=1273,..., (S62)
{nln} {nln}
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with by = 0. The coefficients are chosen to make the basis orthogonal, and an orthonormal basis is obtained as |n) = |n}/+/{n|n}.
In this orthonormal basis, the Hamiltonian is tridiagonal,

ar by
Vb1 ay by

W)=

(S63)

For models with a particle-hole symmetric DOS p(E) = p(—E), as is the case here, all the a, coefficients vanish identically.
Goo(z) is obtained as the 11 element of the Green’s function matrix in this basis:

_ 1
Goo(2) = (1|(z = H)~'[1) = o , (S64)
zZ- - by
¢ bn-1
Z e —
z—bnt(2)
for a given N > 1, where we define the remainder #(z) as the infinite continued fraction
1
t(z) = b . (S65)
__ON+l
_ bnp
Z—

In a gapless system, the sequence b,, converges to a well-defined value b, = lim, . b, [28]. We compute the b,, coeflicients
via Lanczos iteration (S61-S62) on a finite hyperbolic lattice with PBC or OBC up to a value n = N until the desired degree of
convergence is reached. However, on a finite hyperbolic lattice with V sites, only the first ny, coefficients capture the true bulk
physics where ny,x grows logarithmically with V [26]. In practice, we compute the coefficients until approximate convergence
is reached within a certain range n; < n < n; (see Fig. S5). We then obtain an estimate of b, as the average of the b,, over this
range. We then set b,, = b, for all n > N for some chosen N < ny,n,. Thus, the remainder can be calculated exactly:

1(z) = ! ! ! (z 2= 4bm) , (S66)

3 b - 72— boot(2) - 2be
Z —boo
Z— -

7 —

upon solving the quadratic equation (z — bot)t = 1 for ¢, where the negative square root is chosen to ensure 7(z) has the correct
analytic properties of a Green’s function (vanishes as z — o). Since #(z) develops a nonzero imaginary part for | Re z| < 2Vbeo,
the DOS has nonzero support in the interval —2vbo, < E < 2Vb.,.

In a system with a (single) gap, the odd coefficients (b5,+1) and even coefficients (b,,) asymptote to two different limits as
n — oo [28]. In this case, we choose N to be an even integer, such that the remainder becomes

1 1
1(z) = = ; (S67)
b‘(;) bg:)
- -
bl 2-b1(2)
o )
PR R
b
.

having defined b‘(x',’ ) = lim,, 00 2,41 and b(()f ) = lim,, o b>,. In practice, we again estimate b((x? ) and b(()f ) as averages over a suit-
able interval of (odd/even) n where approximate convergence is observed, together with error bars from the maximum/minimum
values of b, over this convergence interval. The quadratic equation for #(z) in Eq. (S67) can again be solved, yielding

1
)

1(z) =
2b£f z

(f Ao - (2 - A2 - 462 (368)
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k Supercell ~ Continued-fraction (PBC) Continued-fraction (OBC)
2 3 3 3
4 15 15 15
6 87 87 87
8 537 537 537
10 3423 3423 3423
12 22239 22239 22239
14 146 289 146289 146289
16 970677 970677 970677
18 6482175 6482175 6482175
20 4350259 4350259 4350259
22| 2931079 2931079 2931079
24| 1981314 1981314 1981314
261342978 1342978 1342978

TABLE S1. Comparison of (normalized) kth DOS moments py / 2k obtained from the supercell method (2048 sites, 10° momenta, energy
resolution 0.0002; rounded to the nearest integer) and the continued-fraction method with PBC and OBC clusters, in the isotropic limit
Jx =Jy =J; =1, K =0. Digits that disagree across methods are highlighted in orange.

where we define A, = b((,ff ) bf,f ) Inspecting the branch points of 7(z) as before, we find that the gap in the DOS is given by

85 =2 [0 - o). 560

In Figs. S9a and S10a, we plot the gap AE together with estimated error bars coming from the maximum/minimum gap over
the convergence interval discussed previously. For both PBC and OBC clusters, within the estimated error, we find that the
spectrum is gapless in the isotropic limit J, = J, = J; = J and for K = 0. Thus, in the Letter, we present results in this case
that are calculated using the remainder formula (S66) for gapless systems. For J, # 1 or K # 0, we use the two-sided remainder
formula (S68).

To compare results obtained from the supercell method (Sec. V) vs the continued-fraction method, we compare in Table S1
the moments of the DOS, defined as

Uk = /oo dE p(E)E*. (S70)

o

Due to the bipartite nature of the {8, 3} lattice, the model has a particle-hole symmetry, p(—E) = p(E), and thus only the even
moments are nonvanishing. We compare the even moments from the supercell method, obtained via numerical integration of the
DOS, to those obtained from the continued-fraction method (in the isotropic, K = 0 limit). For the latter method, we use the fact
that for a translation invariant system with V sites,

1
= Z<i|H’<|i> = (0|H*[0) = (1|H*|1), (S71)

with |0) = |1) denoting the localized state at the center of the cluster. The (1, 1) element of the kth power of H is easily computed
using the tridiagonal representation of H in Eq. (S63), and only involves b, coefficients up to n = k/2. For the PBC cluster,
translation symmetry implies that (i|H¥ i) is truly independent of i, while for the OBC cluster, since there is no true translation
invariance, i = 0 is chosen to mitigate boundary effects. The computation of moments can also be used to benchmark our
finite-size clusters. For the simple nearest-neighbor tight-binding model on the {8, 3} lattice [26], we find that our PBC (OBC)
cluster captures the correct moments up to k = 22 (k = 30).

VII. EXTENDED DATA FIGURES

In this section, we provide extended figures of data already presented in the Letter, e.g., with some variation in the precise
quantities plotted or with full ranges where only close-ups are shown in the Letter. Section VII A contains extensions of Fig. D7
comparing not only the ground-state energy per site but also the energy per vortex for different flux configurations. Section VII B,
on the other hand, contains plots of the density of states over the full range of energies for different points in the phase diagram
and with both K = 0 and K # 0, as well as plots of the spectral gap (cf. Figs. 3b and 3c) for larger ranges of J, and K, respectively.
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FIG. S6. The six equivalence classes of translation-invariant flux configurations. White (blue shaded) octagons denote plaquettes with
(0) flux, Wp = —1 (Wp = +1). The following representative flux configurations are shown: (a) (x,n,n, 7, n, 7), (b) (0,7, 7, x, 7, 0), (c)
(7,0,0, 7, 7, 7), (d) (x,0,0,0,0,n), (e) (0,7,7,0,0,0), and (f) (0,0,0,0,0,0), where the plaquette fluxes are given in the order specified by
the numbers in panel (a).
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FIG. S7. Ground-state energy for the 32 translation-invariant flux configurations with zero net flux per primitive cell for Jx = Jy, = J; =J
and K = 0 with error bars indicating 95% confidence intervals. The flux configurations fall into the six equivalence classes shown in Fig. S6
and are labeled by the corresponding panel label. (a) Estimated ground-state energy per site Eq with errors from the fit discussed in App. C.
(b) Energy per 0-flux vortex obtained by computing the energy difference Ey — Egg between the ground-state energy Eg of the given flux
configuration and Egg, the minimal one (homogeneous r flux), and dividing by the density of vortices n, in the given configuration.

(a) Energy per site (b) Energy per 0-flux vortex
S L L L LR B L L L L L LR L L LI L L L LR B O 10 _l LELELELELEL L L LN DL L L L L L L L L L L L L L L B '_
-0.305 F 3 T ]
C ] [ c ]
s ] - 0-0-0-0-0-0-0-0-0-0-0-0 -
-0.310F d -o-omo-o-{-o-o- E g 0.09F ]
— ; e : [ ooo
“3/ -0.315 1 - >m 0.08 :_ b d ;
= ~0.390 JEPUUC . oo s S . 3 Lg - 000000000000000
= E ’ 11 oo7f ‘ ;
-0.325 3 . 1S f .
-0.330F = ] 0.06 .
o BT T T T T T T T TN T TN T TN TN T TN TN T W N WY WY W TN AT T TN AN W O O B = [T T T T TN T NN T T [N T T T TN T T T T T N N T N T T T T T N L
0 10 20 30 0 10 20 30
Flux configuration Flux configuration

FIG. S8. Ground-state energy for the 32 translation-invariant flux configurations for Jx = J, = J; = J and K = 0.5J. See Fig. S7.
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A. Ground-state flux sector

In App. D, we have studied the ground-state energy in different flux sectors. We have used this to verify the prediction that the
flux configuration with homogeneous 7 flux has lowest energy for K = 0, as implied by reflection positivity, and to demonstrate
that even for finite K, the homogeneous-r-flux configuration remains the lowest.

For K = 0, we find that the configuration with homogeneous 7 flux is separated by a gap of 0.00113(7 + 6) x 3J from the
configuration with next higher energy, in this case the one with two neighboring vortices of 0 flux, cf. Figs. S6 and S7a. Further
insights can be gained by computing the energy per vortex (corresponding to a plaquette with flux 0) (Eg — Egs)/n, for each
of the configurations, see Fig. S7b. Here Egs is the ground-state energy Eq of the homogeneous n-flux configuration and n,
is the vortex density, i.e., the number of vortices per site. We observe a nontrivial dependence on the distance between the
vortices involved in each configuration. The lowest energy per vortex is attained for configurations of the type shown in Fig. S6b,
which have two vortices per unit cell spread out symmetrically. This is closely followed by the homogenous 0-flux configuration,
Fig. S6f. Curiously, the other configuration with two vortices per unit cell, Fig. S6¢, where the vortices are closer to each other,
has highest energy.

We repeat the same analysis for K = 0.5J and show the results in Fig. S8. The gap to the next translation-invariant configuration,
which is still Fig. S6b as for K = 0, increases by an order of magnitude to 0.01064(84 + 18) x 3J. Interestingly, there is a
rearrangement of the configurations in terms of energy per vortex. While configurations of the class shown in Fig. S6b also had
the lowest energy per vortex for K = 0, now the homogeneous 0-flux configuration drops significantly below it. This suggests a
change in the vortex-vortex interaction potential when increasing K.

B. Fermionic spectrum in the homogeneous 7-flux sector

Here, we present the full plots on the fermionic spectrum in the homogeneous m-flux sector going beyond the close-ups of
interesting features shown in Figs. 2b, 3b and 3c. In particular, in Sec. VII B 1, we show how the gap opens when departing from
the isotropic point Jx = J, = J; (K = 0) in the phase diagram and in Sec. VII B 2, we consider the gap induced by K # 0. In
both cases, we comment on the complications arising from each of the two methods.

1. Gapping by anisotropy

Figure S9 shows data for K = 0 starting at the isotropic point J, = J,, = J, and going along a vertical cut through the parameter
space from the center of the phase diagram towards the top corner: J, = Jy, Jx +Jy, +J, =3J,ie.,J, =J, =3J(1-J;/(3]))/2.
Extending Fig. 3b, Fig. S9a shows the spectral gap AE as a function of J, near the isotropic point J,/(3J) = 1/3. Note
that no data points for the gap obtained from the supercell method are shown very close to the isotropic point. For those, the
algorithm introduced in App. C fails to detect a gap, which either implies a truly gapless spectrum (in the thermodynamic limit) or
insufficient convergence in the supercell size for extrapolation to work accurately. Based on our data, we thus cannot distinguish
whether the gapless phase is restricted to the isotropic point or a small region around it. However, we can deduce an upper bound
toits extent: (J, —J)/(3J) < 0.013. Overall, the results obtained from the three methods agree within their respective error bars.
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FIG. S9. (a) Spectral gap AE including uncertainties shown as error bars as a function of J;/(3J) for Jx = Jy and Jx +Jy +J; = 3J. The
gap opens immediately when departing from the isotropic point J;/(3J) = 1/3. (b,c) Density of states p as a function of energy E at (b) the
isotropic point (gapless) and (c) J;/(3J) = 2 (gapped). Data obtained using the supercell method (sc-HBT; 2048 sites, moving average window
0.01.), the continued-fraction method applied to clusters with periodic boundary conditions (cf-PBC; ~108 sites) and to flakes with open
boundary conditions (cf-OBC; ~108 sites) is shown, see legend. The density of states obtained from the continued-fraction method explicitly
assumes the presence of (b) no and (c) a single gap.
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FIG. S10. Spectral gap AE and density of states at the isotropic point Jx = Jy, = J, = J for different values of K. See caption to Fig. S9
for more details. Note the two gaps at E/(3J) ~ +1.55 that start developing at (b) K/(2J) ~ 0.002 and have fully formed (as far as can be
discerned from the supercell method at the given resolution) at (c) K/(3J) = 0.01. The density of states obtained from the continued-fraction
method explicitly assumes the presence of a single gap in both (b) and (c).

Figures S9b and S9c show the density of states for the two choices J,/(3J) = 1/3 and J,/(3J) = 1/2, respectively, covering
the full energy range in contrast to Fig. 2b. We again observe very good agreement between the three methods. Note that in the
case of the continued-fraction method, an assumption on the number of gaps needs to be made. This is done based on Fig. S9a,
i.e., in Fig. S9b no gap while in Fig. S9c a single gap is assumed.

2. Gapping by time-reversal-symmetry breaking

Similarly, we have demonstrated the effect of the time-reversal-breaking term, i.e., K # 0, in Fig. 3c. Figure S10a shows an
extension of that figure, i.e., the spectral gap as a function of K at the isotropic point. As expected from symmetry, we observe
that any K # O opens the gap. However, here, we find increasing deviations in the results obtained from the three methods with
increasing K. Considering the density of states obtained from the supercell method, Figs. S10b and S10c, we recognize that
additional gaps develop away from zero energy. These gaps are not captured by our implementation of the continued-fraction
method, which assumes at most a single gap. Multiple gaps can in principle be captured by the method [28]; however, the
formalism becomes increasingly complicated and would require even larger system sizes, which are currently not accessible to
us. As long as the additional gaps are small enough, we do not expect them to significantly influence the extracted main gap AE,
but the influence grows with K. In fact, even the density of states away from the gaps is barely affected in Fig. S10c. Thus, the
continued-fraction method allows us to extract the gap at small K, where the spectrum obtained from the supercell method is not
converged to the necessary resolution in energy, while the supercell method becomes more reliable at larger K.

VIII. GAPPED Z, SPIN LIQUID IN THE ANISOTROPIC COUPLING LIMIT

In this section, we provide derivations of the statements made in the section Z, spin liquid of the Letter, in particular of the
hyperbolic Kitaev model [Eq. (1) in the Letter] in the anisotropic coupling limit J, J,, < J, with K = 0. From the phase diagram
obtained via the free-fermion solution of the model [Fig. 2a in the Letter], we know that in this limit, the fermion sector is gapped.
By studying the model directly in the spin-1/2 representation but treating J/J;, J,/J, as small parameters, we show here that
the model maps in that limit onto an analog of the toric code [31] but on the hyperbolic {8, 4} lattice. We find that the latter
model is again exactly solvable, and use it to show that the low-energy spectrum contains two types of gapped anyons (e and m
particles) with mutual semionic statistics. By adiabatic continuity, this establishes that the entire phase denoted G in Fig. 2a in
the Letter is a gapped spin liquid with Z, topological order.

In Sec. VIIT A, we rewrite the {8,3} Kitaev model as a model of effective s = 1/2 spins and hard-core bosons on the
Archimedean (8,4, 8,4) lattice. In Sec. VIII B, we formulate a perturbative approach to systematically compute an effective
Hamiltonian as a power series in the small parameters J,/J;, J, /J, and derive Eq. (1) in the Letter. In Sec. VIII C, we focus on
the limit of low energies w < J; (i.e., energies much less than the Majorana fermion gap E, = AE/2 =~ 2J;) and show that the
effective Hamiltonian reduces to a hyperbolic surface code on the {8, 4} lattice with (static) anyonic excitations. Throughout this
section, we rely heavily on the perturbative methods developed in Ref. 32 and applied in Refs. 33 and 34 to the original Kitaev
model on the honeycomb lattice.
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FIG. S11. In the anisotropic coupling limit Jy,Jy < J;, the Kitaev model on the {8, 3} lattice [black lines in (a)] maps onto a model of
effective s = 1/2 spins and hard-core bosons on the hyperbolic Archimedean (8, 4, 8,4) lattice [tiling by blue octagons and yellow squares
in (a) and (b), with lattice sites indicated as red dots]. At low energies, this effective model reduces to a hyperbolic analog of the toric code,
where spins (red dots) live on the edges of the {8, 4} lattice [black lines in (b)]. Low-energy e (m) excitations correspond to star (plaquette)
excitations on the {8, 4} lattice [blue and orange in (b), respectively] and obey mutual semionic statistics.

A. Mapping to spin-boson model on (8,4, 8, 4) lattice

In the limit J, = J, = 0 with J, > 0, the model consists of decoupled dimers with ferromagnetic interactions on the z-bonds
of the 3-edge colored {8, 3} lattice. The many-body ground state in this limit is macroscopically degenerate, each dimer being
in either the 17 or || configuration. The lowest excited state above this degenerate ground state corresponds to flipping a single
spin on a single dimer, with an energy cost 2J,. In the Majorana fermion language, this corresponds to the single-particle gap
AE = 4], obtained at the corners of the phase diagram in Fig. 2a in the Letter [the physical many-body gap is AE/2, since
only Majorana excitations with energy £ > 0 are physical—see Eq. (S48)]. Here, we are interested in how the macroscopic
ground-state degeneracy is lifted upon turning on small exchange couplings Jy, J, < J;. As we will see, this results in a much
smaller many-body gap A « ch./;t / Jz7 < J,, corresponding to Z; vortex (or vison) excitations.

The idea [33] is to represent the four possible states of a dimer, including the (ferromagnetic) low-energy states |TT), |]]) and
the antiferromagnetic (high-energy) states [T]), |]T), in terms of an effective spin-1/2 moment ¥ (with 7 eigenstates denoted as
11, 1) and a hard-core boson b, b* (with occupation number states denoted as 0, 1):

m=mo. WH=Lo0o, NMh=ImL. UD=IUDL. (872)

As the local Hilbert space dimension on a given dimer is still four, the mapping (S72) does not necessitate the imposition of any
local gauge constraint. Here, we use the bipartite property of the {8, 3} lattice to assign sublattice (A/B) labels to the two physical
spins on any z-bond dimer [black and white dots in Fig. S11a]. The corresponding spin operators can be written as follows in
the new representation:

oy=17(bT+b), Gy=t(b"+b). =17 573)
o =b"+b, oy =it2(b - b), &% =+%(1-2b"h).

Although this representation explicitly breaks the bipartite symmetry of the lattice, as will be seen, the symmetry will be restored
in the effective Hamiltonian.

Collapsing each z-bond to a single effective site on which those new degrees of freedom live, the original Kitaev model is
now mapped exactly onto a model of interacting effective spins and hard-core bosons on the hyperbolic Archimedean (8, 4, 8, 4)
lattice [Fig. S11a]. An Archimedean (nf‘ , ngz, n?, ...) lattice is a lattice composed of more than one type of regular polygons
(here squares and regular octagons), where each vertex is surrounded by an identical sequence of a; adjacent nj-gons, followed
by a, adjacent ny-gons, followed by as adjacent n3-gons, ..., as one goes clockwise around the vertex [35]. (For example, the
Euclidean honeycomb and kagome lattices are (6%) and (6,3,6,3) Archimedean lattices, respectively.) Using Eq. (S73), the
{8, 3} Kitaev model can be written as:

H=-NJ, +21,0+To+Tr+T_,, (S74)
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where N, is the total number of z-bonds,

0= Z bibg, (S75)
R

is the total number operator for hard-core bosons, with R denoting the sites of the (8, 4, 8, 4) lattice,

To==Jc Y bibrti —Jy > bhbritity +He., (S76)
(RR)x (RR’)y
is a boson hopping term, and
To==Jc Y. bhbhti =Ty > bhbhitith, (S77)
(RR)x (RR’)y

T, =1, (S78)

are boson pair-creation/annihilation terms. (Recall that hard-core boson operators obey anticommutation relations for R = R’
and commutation relations for R # R’.) Here, (RR’), ((RR’),) denote nearest-neighbor x-bonds (y-bonds) on the (8,4, 8,4)
lattice [see bonds labeled by x (y) between nearest-neighbor red sites in Fig. S11a]. In Eq. (S74), —N.J is the (macroscopically
degenerate) ground-state energy in the J, = J, = 0 limit. As is clear from Eq. (S72), the term proportional to O indicates
that creating a boson corresponds to flipping a physical spin on a single dimer, which costs energy 2J,. To investigate vison
excitations with a gap much less than 2J,, we wish to derive an effective Hamiltonian valid in the Q = 0 (zero-boson) sector.
To achieve this, the strategy [33] is to perform a unitary transformation to a Hamiltonian U U which conserves the boson
number Q, and evaluate this Hamiltonian in the low-energy sector Q = 0.

B. Effective Hamiltonian from perturbation theory

The desired unitary transformation cannot be performed exactly, but it can be performed order by order as a perturbative
expansion [32], here in powers of J/J; and J, /J,. We refer the reader to the original reference [32] for the details of the method
and outline here only the key steps. The method works for Hamiltonians of the type

N
H=Fo+ Y T, (S79)

n=—N
where the unperturbed Hamiltonian Hy = —~N.J, +2J.0 is proportional (up to an additive constant term, here —N_J) to a
“charge” Q with nonnegative integer spectrum 0, 1,2, .. ., and 7, increases this charge by n, i.e., [Q,T,] = nT,,. The operators

T, are assumed to be proportional to a common small parameter which controls the perturbative expansion. The outcome of the
method is a unitarily equivalent Hamiltonian expressed as a perturbative series,

UWHAU = Fy + Z Z C(m)T(m), (S80)

k=1 |m|=k

where k is the order in perturbation theory. For each k, the second sum is a sum over all k-component vectors m =
(my,my,...,my) (indicated by the notation |m| = k) where the entries m; € {-2,0,2}, which are the allowed values of n
in Eq. (S79) for our case [compare with Eq. (S74)]. Furthermore, one only keeps in the sum the vectors that obey sz:l m; = 0.
Finally, the operators 7'(m) are products of k operators T}, specified by the vector m,

T(m) =T, Ty -+ - Ty (S81)

and the numbers C(m) are coefficients that are computed using a recursive method [23]. Note that the condition Zf;l m; =0
implies that the transformed Hamiltonian commutes with the boson number O as desired. Once Eq. (S80) has been evaluated up
to a desired order knax > k > 1 in perturbation theory, we project it onto the Q = 0 sector, i.e., we compute its expectation value
in the boson vacuum |0) defined by b |0) = 0 for all R:

kl‘ﬂélX
Herr = OUTHUN0) = =N_Jo + Y~ > C(m)(0[T(m)[0). (S82)
k=1 |m|=k

Note that Heg is still an operator acting in the effective spin Hilbert space, because only the boson degrees of freedom have been
projected out.
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C. Hyperbolic {8, 4} surface code and anyonic excitations

Inthe Q = 0 sector, the only nonconstant contributions to Hogrin Eq. (S82) come from closed loops, i.e., plaquette operators [33].
In general, H.s contains both single-plaquette terms and multi-plaquette interactions. For simplicity, we ignore multi-plaquette
interactions here, and focus on the single-plaquette terms which give a toric-code-like Hamiltonian. The (8, 4, 8, 4) lattice itself
contains only two types of plaquettes, square and octagonal, but in the general case J, # Jy the effective model distinguishes
three types of plaquettes: two square (Oy, Oy) and one octagonal (), see Fig. S11a. For single-plaquette terms, the computation
is done by considering separately a single plaquette of each type [23]. Starting with the O, plaquette, we see from Fig. S11a that
it involves four z-sites connected by four y-bonds. To compute the contribution to the effective Hamiltonian (S82) from such a
plaquette, it is sufficient to truncate the full Hamiltonian (S74) to a four-site Hilbert space (R = 1,2, 3,4) with effective spins
%1,..., T4 and hard-core bosons IB?L), e, IQE‘T). Thus, for this calculation, only terms involving sites R, R’ € {1,2, 3,4} need
to be kept in the 7}, operators in Egs. (S76-S78). To project out the products 7'(m) in Eq. (S82) onto the boson vacuum |0),
we work with a 2% x 2% matrix representation of the 1351'), cees IQY) operators in the Fock basis. In practice, this is conveniently
done by viewing hard-core boson Fock states as the binary representation of the integers O, . . — 1 [36]. Since the effective
spin degrees of freedom are not projected out, but remain as noncommuting operators obeying the Pauli algebra, we handle them
using the DiracQ MatHEMATICA package [37]. Since the O, plaquette contains four bonds, we expect the first non-constant term
to appear at fourth order in perturbation theory, and indeed we find, omitting a constant correction to the ground-state energy,

yeo 5% SEXENES 83
off TTe3127 (S83)

Repeating the calculation for the Oy, plaquette with four z-sites connected by four x-bonds [Fig. S11a], we obtain

4
7~ (Oy) 5 Jx AXAXAXAx
' =165 FHEE, (S84)

i.e., the same result but with J,, replaced by J,. Finally, for the octagonal plaquette with eight z-sites connected by alternating x-
and y-bonds, we expect a non-constant contribution o Ji];‘ / JZ at eighth order in perturbation theory,? and indeed obtain,

. s gy
W(O) = 2048 ;7); TlZ ZZ 3T:T§T5T;T§’ (S85)

working with a 28-dimensional boson Hilbert space. Summing over all plaquettes, we obtain the effective Hamiltonian

“ 5 ]4 R J4J4
Herr = - 163% H R~ 16@2} ]_[ 2048 7 ZR];[D (S86)

We next show that the plaquette operators appearing in Eq. (S86) are nothing but the Wilson loop operators Wp =
[1¢j xyaepr 6';’6-]? introduced in the Letter. Going back to the original {8,3} lattice, our choice of 3-edge coloring defines
three different types of plaquette operators (as for dimer covering III in Ref. 13), corresponding to the parent octagons for the O,

Oy, and laquettes introduced earlier. Numbering the sites around an {8, 3} plaquette as j = 1, ..., 8, we have
y J
7 AVAYAZAZAYAYAZAZAYAVAZAZAYAYAZAZ _ _ AXAXAXAXAXAXAXAX
Wo, =07050,05050,0,0505050(0,0,03040y =-0,0,030,05040703, (S87)
7 AZAZAXAXAZAZAXAXAZAIAXAXAZAZAXAX _ _ AVAVAYVAYAYAYAYAY
Wo, = 070,0,03050,0,0505030¢0707050307 ==070,030,050,0;0%, (S88)
7  AXAXAYVAVAXAXAYVAVAXAXAYAVAXAXAYAY _  AZAZAZAZAIAZATAZL
()T 01020,030304,0,0505040507070505807 =—0,0,050,0505070% (S89)
Next, we map these operators to the spin-boson Hilbert space using the definitions (S73). In the following, R = 1, ..., 8 once

again denote sites of the (8,4, 8,4) lattice, as in Egs. (S83-S85). Since the A/B sublattices alternate as we go around each

2 At the same order in perturbation theory, we also expect an interaction term between neighboring Oy and Oy plaquettes, but we neglect such terms here for
simplicity.
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octagon, we obtain

i _ _AX AX AX AX AX AX AX AX AX
Wa, = =07 407 g03 A0) 503405 g0y A0 p = 1_[ TR» (S90)
ReOy
Vo o—_aY aY AY AY AY Y Y AV Sreoy OR AX
Wa, = =07 407 05 205 p03 403 g4 AT} g (—1)=keey TR (S91)
Ren,

! — 52 AT 5T AZ 5T ysD AT AL _(_1\ZRr-24680OR Az

W) = =07 405 805404 805.4Y06,597.405 5 = —(=1) 1—[ TR (892)
Re()

Here, Q R = lA)LIAJ R is the boson number operator on site R. We see that VAVDy involves the total boson number on plaquette Oy,
while WO involves only the sum of boson numbers on every other site of plaquette (). After projecting to the boson vacuum,

we see that the Wilson loop operators (S90-S92) become precisely the plaquette operators appearing in the effective Hamiltonian
(S86), such that we can write

Fio = 575 O NERIE Iy
ey Oy T 2 ]
T16U3 £ 163 &4 77 2048 J!

(S93)

Note that all the (projected) plaquette operators commute with each other.> We make two observations. Firstly, since all the
couplings in Eq. (S93) are positive, the ground state is obtained by setting all plaquette operators Wp to —1, which is consistent
with the argument based on Lieb’s lemma in the Letter. Secondly, setting J, = J,, = J| < J, for simplicity, we see that the
lowest-energy excitation is a Z, vortex on a single () plaquette (WO = +1), which costs an energy E O [Jz o (J) /J-)® that is

much lower than a vortex excitation on a square plaquette, E5/J; o (J)/J. R

Finally, we show that the Hamiltonian (S93) can be mapped to a hyperbolic surface code on the {8, 4} lattice [Fig. S11b], i.e.,
a hyperbolic analog of Kitaev’s toric code on the square lattice [31]. To achieve this, we simply view the (8, 4, 8, 4) lattice as the
medial lattice of the {8, 4} lattice (i.e., the lattice obtained by placing sites at the mid-points of the edges of the original lattice).
For simplicity, we also set J = J, = J|| as in the previous paragraph, which allows us to ignore the difference between x-bonds
and y-bonds. Then, we can reinterpret the Hamiltonian (S93) as a model on the {8, 4} lattice,

For =—-Je ) Ay—Jm ) By, (S94)
v P

where J, = 5] / (16J3) and J,, 5J8 / (2048J7) are positive coupling constants, the sum over v (p) is over all vertices
(plaquettes/faces) of the {8, 4} lattice, and the (commuting) AU and B p operators are defined as

A=11% Bo=1]% (S95)
le+, tedp

with +, denoting the “star” of v (i.e., the four edges incident on v) and dp the perimeter of the octagonal plaquette p [31]. We
note in passing that in the context of quantum information processing, such hyperbolic surface codes have been the object of
much interest in recent years [2, 39-43].

As in the original toric code, the hyperbolic code (S94) can be viewed as a fixed-point Hamiltonian for the deconfined phase
of a Z; gauge theory on the {8, 4} lattice, with 7/ and 7, corresponding to the Z, gauge and electric fields on link ¢, respectively.
The ground state has A, = +1 for all v and Ep = +1 for all p. The low-energy excitations are static Z, charges (“e particles™)
with A, = —1 on some vertex v, that cost energy 2J., and static Z, fluxes or vortices (“m particles”) with 1§’p = —1 on some
plaquette p, that cost energy 2J,, < 2J,. Fluxes and charges obey bosonic self-statistics but are mutual semions, which can be
seen as follows [33]. Assuming an infinite lattice, consider a nonlocal operator X defined as the product of 7, operators over all
links ¢ crossed by a semi-infinite contour C living on the dual lattice (orange contour in Fig. S12):

=[] (S96)
teC

Z

When applied to the ground state |GS) of Hamiltonian (S94), this operator flips the sign of % on every link crossed, thus it

creates a single m flux (B = —1) on the plaquette p where C terminates. If we create two such exc1tati0ns on different plaquettes,

3 This model can thus be viewed as a hyperbolic analog of the Wen plaquette model [38].



26

FIG. S12. Mutual anyonic statistics in the {8,4} hyperbolic code. A Z, flux m (charge e) is initially created by a string operator X (2)
supported on the links (solid dots) crossed by the semi-infinite contour C (C”). The flux is then adiabatically braided around the charge along
the closed contour L, which is implemented by a loop operator X’ with support on the red open circles. The contour L must cross the “Dirac
string” C” an odd number of times (here once, on link ¢,), resulting in an overall phase factor of —1 which indicates mutual semionic statistics.

their corresponding string operators obviously commute (being made of products of only 7* operators), thus the m particles have
bosonic self-statistics. Likewise, we define a nonlocal operator Z as the product of #; operators over all links ¢ traversed by a
semi-infinite contour C’ living on the {8, 4} lattice (blue contour in Fig. S12):

A

2=+ (S97)
teC’

This operator flips the sign of 7 on every link traversed, thus it creates a single e charge (A, = —1) on the vertex v where
C’ terminates. Again, the string operators creating two separate Z; charges commute, thus those particles also obey bosonic
self-statistics.

Now, begin with the state |¥) = ZX |GS) containing both m and e particles and consider braiding m around e along a closed
contour L (dashed red contour in Fig. S12). Moving m along this contour is accomplished by the operator

X =] (S98)

CeL

where the product is now only over the red open circles in Fig. S12. We obtain the state |¥’) = X’ZX |GS), but X'Z = —ZX’
because there is necessarily one link £, (more generally, an odd number of links) where L and C’ cross and thus where 7} from

X’ and 7, from 7 must be anticommuted. Thus, we obtain [¥') = —~ZX X’ |GS), using also that X and X’ obviously commute.

Finally, X’ is the product over all T, operators crossed by L, and is thus also equal to the product of A, over all vertices v enclosed
by L.* (Since all links internal to L appear twice in this product, only links on the perimeter remain.) Since A, = +1 for all v
in the ground state, we have X’ |GS) = |GS), and thus |¥’) = — |¥) independent of the detailed shape of the contours C, C’, L,
apart from their intersections. Thus, an adiabatic phase of —1 is obtained upon braiding an m particle around an e particle,
indicating mutual semionic statistics. We conclude that the gapped phase adiabatically connected to the anisotropic coupling
limit J, J, < J; is a gapped spin liquid with Z; topological order. For recent studies of hyperbolic lattice models displaying Z,
or other types of topological order (e.g., fracton order), also see Refs. 44—47.

Finally, a moment’s thought reveals that the above analysis can be straightforwardly generalized to hyperbolic {2m, 3} lattices
for any m > 4, assuming the 3-edge coloring discussed in Sec. I. One first obtains a spin-boson model on the Archimedean
(2m, m,2m, m) lattice, which is then projected onto a hyperbolic surface code on the {2m, m} lattice.

4 This can be viewed as a Z; analog of the divergence theorem: X is the net electric flux through L, and [T, inside L. A, is the volume integral of the divergence
of the electric field. By Gauss’ law, both give the total Z, charge enclosed by L.
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FIG. S13. Computation of the real-space Chern number. (a) 128-primitive-cell PBC cluster I't33_ 1n165.1 (edges shown in black) and the three
regions A, B, C (colored sites) up to a bounding radius of r = 0.955 (gray circle). (b) Real-space Chern number C at the isotropic point for
K # 0 as a function of bounding radius r for different PBC clusters; their size in terms of number of primitive cells is given in the inset legend.
Note that sites within the bounding circle that have nearest-neighbor bonds that connect to the other side of the projection are discarded. The
Chern number converges closer to the true value with increasing region size up to a point from which on the result gets poisoned by the periodic
boundary conditions.

IX. COMPUTATION OF THE REAL-SPACE CHERN NUMBER

In this section, we discuss the computation of the Chern number for K # 0 as performed to obtain the data shown in Fig. 4a.
We use the real-space Chern number [ 10], which directly applies to any two-dimensional system, including hyperbolic lattices [8,
48, 49] and even amorphous media [50]. Given a projector P and three regions A, B, C of sites arranged counterclockwise as
depicted in Fig. S13a, it is defined as

C=IZHiZZZ(ijPklPlj—PﬂPlkij). (599)

jeAkeBleC

While this is often applied to systems with open boundary conditions, we here perform the calculation on PBC clusters. In the
former case, the regions A, B, C have to be chosen sufficiently far away from the boundary, to avoid boundary effects, which
would compensate the bulk and result in a trivial Chern number. On PBC clusters this is similar: we have to constrain the regions
such that they are sufficiently separated and do not wrap around the higher-genus surface on which the PBC cluster is embedded.

To select these regions, we work in the Poincaré disk representation and use the fact that any of the supercells described
in Sec. V A can be interpreted as a finite PBC cluster [21] by considering the quotient I'/T'?) and then following Sec. VIB.
Starting from the symmetric supercell constructed using the HyPERCELLs package [19], this allows us to immediately obtain a
symmetric projection of the PBC cluster onto the Poincaré disk. When defining the regions A, B, C, we only include sites lying
within a given bounding radius r and explicitly exclude sites that have nearest-neighbor bonds that connect to the other side
of the projection. Figure S13a shows this construction for the 128-primitive cell PBC cluster defined by I't33.1nT65.1 given in
Eq. (S53d). A priori, it is not clear which r is optimal for approximating the Chern number in the thermodynamic limit, such
that we study the Chern number as a function of r on different PBC clusters and choose the maximal » up to which C(r) is
monotonic, see Fig. S13b. For the largest PBC cluster, we find an optimal bounding radius of = 0.955 (gray vertical line).

To evaluate Eq. (§99), we need the projector onto the occupied subspace, which we obtain by exact diagonalization of the
model Hamiltonian iA on the given PBC cluster. With eigenstates |n) and eigenenergies €, # 0 (assuming a spectral gap such
that the Chern number is well-defined), the projector is

P= Z InXn| . (S100)

n:e, <0

Its matrix elements Pj; = (z;|P|zx) in the real-space basis |z;) with z; the position of site j in the Poincaré disk then enter
Eq. (S99). In practice, we can obtain this projector from the spectrally flattened Hamiltonian

B = —isgn(iA), (S101)
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(a) Je=Jy=J.=J, K/3J)=0.1; r=0.955 (b) Jr=Jy, 20+ J. = 3J, K/(3J) = 0.1
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FIG. S14. Results on the real-space Chern number. (a) Convergence with size N (in terms of number of primitive cells) of the PBC cluster
at the isotropic point with K/(3J) = 0.1 and bounding radius 0.955. The value approaches —1. (b) Cut through the phase diagram of the
Chern number C along J, = J; as a function of J; for K/(3J) = 0.1 obtained on the 128-primitive-cell PBC cluster shown in Fig. S13a. In
the thermodynamic limit, the Chern number (blue, left axis) is quantized to integers (horizontal black lines at 0, —1) as long as there is a gap
AE. Due to finite-size effects, there are deviations from the integer values in regions where AE is small. More precisely, the closing of the
thermodynamic gap is replaced by multiple closings (indicated by vertical gray lines) of the finite-size gap (orange, right axis) resulting in
several jumps of C with non-integer values.

where sgn only acts on the eigenvalues, as
1 .
P=§(1—1B). (S102)

At the isotropic point J, = J,, = J; = J, K/(3J) = 0.1, i.e., the choice of K in Fig. 4a in the Letter, and with the optimal radius
r = 0.955, we find that C converges to —1 with increasing supercell size N, see Fig. S14a. Figure S14b shows a cut through
the phase diagram shown in Fig. 4a along J, = J,. Besides the Chern number (blue, left axis), we also show the finite-size gap
(orange, right axis). We recognize that the washed-out phase boundary pointed out in the Letter is caused by several jumps of
C with intermediate non-integer values. These jumps occur precisely when the finite-size gap closes (gray vertical lines) and
correspond to the transfer of individual states from negative to positive energy or vice versa.

X. EXTRACTION OF THE CHIRAL EDGE STATES’ DISPERSION

In this section, we clarify the method used to extract the angular dispersion of the edge state, displayed in Fig. 4b of the
main text. When an open boundary is introduced in the chiral gapped (y) phase, owing to the nonzero Chern number, we expect
the model should develop gapless edge states inside the bulk energy gap. We illustrate the appearance of such states explicitly in
Fig. S15a by comparing the density of states (DOS) in the bulk vs on the boundary of a disk-shaped sample. To further manifest
the boundary character of the in-gap states, we compute for each eigenstate |i/,,) with energy E,, the quantity:

Pn,edge = Z |wn(j)|2» (5103)

jeedge

where by “j € edge” we mean sites located within the outer 10 % of the hyperbolic distance to the disk boundary, and ¢, (j) =
(jl¥n). Similarly, we define the bulk sites “j € bulk™ as those located within the inner 65 % of the hyperbolic distance to the disk
boundary. By representing each state |¢,,) as a point with coordinates (peqsge,n, Ex) in Fig. S15b, we recognize that all states
with energy |E|/(3J) < 0.6 exhibit a significantly larger value of pcgge than the states at larger values of |E|. All calculations in
this section are performed with a system containing all 896 sites of the {8, 3} lattice located within 99.14 % of the radius of the
Poincaré disk (the same as used in Ref. 48 when extracting the chiral edge mode dispersion of a hyperbolic Haldane model). To
realize the chiral gapped phase, we set the model parameters to J := Jy y . = % and K = 1—10.

Near zero energy, we expect the topological edge mode to exhibit an approximately linear dispersion E o« ¢, where ¢ is angular
momentum [51, 52]. However, owing to the discreteness of the underlying {8, 3} lattice, angular momentum of the individual
eigenstates is well-defined only modulo the order of the rotation symmetry, i.e., mod 8, implying an impractically narrow edge
Brillouin zone. To obtain the dispersion over an extended range of angular momenta (—150 < ¢ < 150 in Fig. 4a in the Letter),
we need to devise a physically motivated approximation that treats the discrete lattice as a continuum.
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FIG. S15. (a) Density of states (DOS) p(E) of the chiral gapped phase on a disk with 896 sites and open boundary conditions, with model
parameters set to J := Jx y ; = % and K = %, plotted in arbitrary units (a.u.). The “bulk DOS” (shown in blue) is obtained by summing
the local DOS over sites located within the inner 65 % of the hyperbolic distance to the disk boundary, whereas in “boundary DOS” (shown
in red) we sum over sites within the outer 10 % of the hyperbolic distance to the disk boundary. (b) Each eigenstate is represented as a dot
with coordinates (pedge, E), Where pegge is a measure of edge localization defined in Eq. (S103). Edge states are recognized as the arc of
dots on the right side of the plot. Vertical grid lines indicate the values at which we saturate the color scheme in Fig. 4b in the Letter and in
Fig. S17, and the horizontal grid lines indicate the energy range adopted in said figures. (c,d) Analogous data in the presence of a Z; vortex
threaded through the plaquette located at the center of the disk. The vortex binds a zero-energy Majorana mode, resulting in a small peak in
the bulk DOS at E = 0 [indicated with green arrow in panel (c)]. Due to finite-size effects, the Majorana mode at the vortex hybridizes with a
zero-energy Majorana mode at the boundary, thus acquiring an enhanced value of pegge [indicated with orange arrow in panel (d)] and a small
finite energy E/(3J) =~ +0.0138. (e,f) For comparison, we also show the analogous data for the gapped Abelian Z, spin liquid, which carries
vanishing Chern number, for parameters Jx = Jy = 1/4, J; = 1/2, and K = 0. We observe that the gapped Z; spin liquid phase also exhibits
edge states within the bulk energy gap, including a flat band at £ = 0 (indicated with purple arrow). We find that these zero-energy boundary
states have a large localization length, making the E = 0 peak also visible in the numerically computed bulk DOS. However, we demonstrate
in Fig. S18c that edge states of the trivial gapped phase do not exhibit chiral propagation, in accordance with the vanishing Chern number.

Recall that the angular momentum operator is given by ¢ = —id, where ¢ is the angle in polar coordinates. On a disk
with continuous SO(2) rotation symmetry, angular momentum is a well-defined quantum number. The complex phase of the
eigenstates of £ must grow linearly with ¢, i.e., they are of the form |a,//(g)> o« e'#, where ¢ is the angular momentum eigenvalue.
To verify that this property also holds with good accuracy for the edge states on the discrete graph, we explicitly plot the
dependence of the complex phase arg[y,, (/)] on the angular coordinate ¢( ) of sites j for several eigenstates |¢,,) with energy
E,, close to zero. The result, shown in Fig. S16a, confirms that the complex phase exhibits a well-defined slope corresponding to
a half-integer angular momentum, £ € Z + % as expected for a chiral Majorana edge mode [51, 52]. The data in Fig. S16a also
suggests that the slope £ grows with energy E for the Majorana edge modes near E = 0.

To establish the linear dispersion E (£) of the edge states over a wider energy range, we devise the following scheme to estimate
the angular momentum of the individual eigenstates. Assuming that £ € Z U (Z + %) = %Z, we compute for each normalized
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FIG. S16. (a) Plots showing the linear growth of the phase arg[y, ()] with the angular coordinate ¢(j) of site j for several eigenstates ¢/, )
with near-zero energy. Each plot correspond to a single normalized eigenstate, and the energy of the eigenstates grows from negative (on the
left) to positive (on the right). We display data points only for sites j with |/, (j )|2 > 1/(2N) where N = 896 is the number of sites in the
disk. The observed linear slopes imply that the chiral edge states carry half-integer angular momentum, £ € Z + % (b) Analogous data in the
presence of a Z, vortex threaded through the central plaquette and with a perturbation that shifts the Majorana mode at the vortex to energy
E/(3J) = 1. Ins this case, the angular momentum of the chiral edge states is shifted to integer values, £ € Z.

eigenstate |¢,,) and each £ € %Z the coefficient

2, ()

J

e [0, 1], (S104)

Cn,t =

which we interpret as the likelihood that the state |y,,) carries angular momentum ¢£. This is motivated by the fact that for the
exact eigenstate |¢(€')> o el Jocalized on the boundary of a continuous disk, an analogous integration gives cery,e =0¢¢. The
result of this analysis, plotted in Fig. S17a (also Fig. 4b in the Letter), reveals that the edge states (displayed in red tones) build up
a chiral mode with half-integer angular momentum eigenvalues in the range —90 < ¢ < 90. In addition, owing to the discreteness
of the lattice, we observe several replicas of the chiral mode whose angular momentum is displaced by integer multiples of 4 [that
the ambiguity is mod 4 rather than mod 8 follows from the squaring of the wave function amplitude in Eq. (S104)]; nevertheless,
the main branch passing through (E, £) = (0,0) dominates in intensity over all replicas for all edge states. In addition, we clearly
recognize that the bulk states (displayed in blue tones) do not carry a well-defined ¢ € %Z, making the plotted data featureless at
energies |E|/(3J) = 0.6.

We next investigate the edge states of the chiral gapped phase in the presence of a Z, vortex threaded through the plaquette at
the center of the disk. We observe in Figs. S15c¢ and S15d that this results in a minimal but important change in the bulk and
boundary DOS functions. Namely, the bulk DOS develops a small peak at E = 0 [indicated by the green arrow in panel (c)]
whereas the boundary DOS develops a correspondingly small dip at the same position. Furthermore, the dispersion analysis,
shown in Fig. S17b, reveals that the angular momentum of the Majorana edge states has been shifted to integer values, £ € Z,
and that the £ = 0 Majorana edge state is missing. These observations are explained by the formation of a Majorana mode bound
to the vortex. If the vortex were sufficiently far from the boundary, we would expect a vortex-bound Majorana mode |1//(V)°“ex> to
occur at E = 0. Due to finite-size effects (for the adopted system size, the shortest path from the vortex to the boundary consists

of only seven edges of the {8, 3} lattice) we expect the vortex-bound Majorana mode to hybridize with the E = 0, £ = 0 Majorana
state |¢/8dge> on the boundary. The two resulting hybridized states |Lﬁg"xed’l> and |a,bg"xed’2> both have a large support on the bulk
sites, and we observe them in Fig. S15d at E/(3J) = £0.0138 and pegee = 0.42 (indicated by the orange arrow). This shared bulk
character also explains the dip observed in the boundary DOS in Fig. S15c. In addition, since the vortex-bound Majorana mode
|w(v)°“e"> is strongly localized on a single octagonal plaquette at the center, its coefficients ¢, ¢ computed according to Eq. (S104)
will exhibit strong peaks at all £ = 0 (mod4). This ill-defined value of the angular momentum is shared by the hybridized
Majorana states |¢g“xed’l> and |l//6mxed’2> found in the numerics, as visible in the data near E = 0 in Fig. S17b.

To remove these finite-size effects from the numerics, we apply a perturbation to the Hamiltonian as follows. First, we

numerically find linear combinations
wunmixed, 1 lpmixed, 1
( Lﬁgnmixedlg =M Iwg)nixed,Zg (S 1 05)
0 0

with M € U(2) such that \wg“mixedJ) exhibits the maximal possible value of localization to the boundary peqee [Eq. (S103)]. We
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FIG. S17.  Edge state dispersion in the chiral gapped phase. For each eigenstate |/,,) with energy E, on the disk-shaped flake and for
each angular momentum ¢ € %Z, we plot at coordinates (¢, E,) a data point whose color is set by the edge localization pj, egge [Eq. (S103),
see color legend on the right] and whose opacity is given by the coeflicient ¢, ¢ [Eq. (S104)]. Since most coeflicients are close to zero, the
vast majority of the data points are fully transparent and thus not visible. Only those data points (¢, Ej;) remain visible whose coefficient
Cnt € [0, 1] is sufficiently larger than zero. (a) In the absence of a vortex, we identify a chiral Majorana mode localized at the boundary
(displayed in red tones) at energies |E|/(3J) < 0.6. The inset reveals that the edge states carry half-integer angular momentum ¢ € Z + %,
as expected for chiral Majorana edge modes [51, 52] and in accordance with the phase growth data in Fig. S16a. The bulk states generate
a featureless signal at |E|/(3J) 2 0.6 (displayed in blue tones). (b) In the presence of a Z; vortex threaded through the plaquette at the
center of the disk, the angular momentum of the Majorana edge modes is shifted to integer values. In addition, the vortex binds an additional
Majorana mode whose coefficients ¢, , exhibit large values at all £ = 0 (mod4). Due to finite-size effects, the Majorana modes expected at
zero energy hybridize, resulting in two eigenstates at energy E/(3J) ~ +0.0138 and with angular momentum ¢ = 0 (mod 4). (c) To remove the
undesired hybridization, we apply the perturbation in Eq. (S106) which shifts the Majorana mode at the vortex to energy E/(3J) = 1. In this
case, we observe an approximately linear dispersion E (£) with integer-valued angular momenta ¢ € Z, as expected [51, 52] and in accordance
with Fig. S16b.

interpret the constructed |w“nmmd 1) as |zpedg ) and the constructed orthogonal |zﬁ"nmlxed -2 ) as |wV°“ex> We plot the computed
state |w3“m”‘3d 2) x |w(v)°“ex> in Fig. S18a. Then we perturb the Hamiltonian by adding a term proportional to the projector onto
|wyorer); specifically:

H' =H+Hp,  where  Hpe = 3Jy "2 ) (g ommed2). (S106)

We anticipate such a perturbation to shift the vortex-bound Majorana mode to finite energy E/(3J) = 1, leaving behind a well-
defined Majorana edge state with E = 0,¢ = 0. This expectation is confirmed by the edge dispersion data shown in Fig. S17c.
Correspondingly, the complex phase arg[v,, ()], plotted as a function of the angular coordinate ¢(j) of sites j in Fig. S16b,
exhibits for eigenstates |i,,) with energy near E = 0 the expected linear growth with integer slopes, in accordance with £ € Z.

The chiral character of the Majorana edge modes in the chiral gapped phase can also be illustrated through the propagation
of a wave packet localized at the boundary. To that end, we return to the simpler case without a vortex, and we construct the
Gaussian projector operator [48]

_(En —pE)” ﬂE)
Pug,op = Z exXp 5

where we sum over all eigenstate labels n. Starting with a state |y0c.) localized on a single site at the boundary of the disk (we
specifically select the site with the largest horizontal coordinate Re(z) and Im(z) > 0), the application of the Gaussian projector
operator generates a state

[n) Wnl (S107)

[ os) = Pug.oe Wioe.) - (S108)

Provided that the range |1 + o/ is sufficiently smaller than the bulk energy gap, the operator P, . effectively projects onto
the edge states. Because of the approximately linear dispersion E (£) of the edge states in the chiral gapped phase, the Gaussian
function of the eigenstate energy E,, in Eq. (S107) is simultaneously a Gaussian function of the angular momentum ¢, i.e., the state
|1//LV;' crE> constructed in Eq. (S108) is a wave packet. As such, we expect the wave packet to propagate along the circumference
of the disk with angular velocity w = dE/d¢, which due to the chiral dispersion has a definite positive or negative sign. To test



32

FIG. S18. (a) Plot of the Majorana mode bound to the Z, vortex threaded through the central plaquette, computed using the procedure described
around Eq. (S105). The area of the blue disk at site j is proportional to the probability density |w8"mlxed’2 (j)|?. (b) Propagation of the Majorana
wave packet with ug = 0 and o = 0.06 in the chiral gapped phase. The red data show the initial wave packet as defined in Eq. (S108), and
the subsequent yellow/green/cyan data show snapshots of the wave packet at equally spaced later times 3JT € {100, 200, 300}, respectively.
The blue arrow indicates the counterclockwise propagation of the wave packet, with the direction fixed by dE/d¢ > 0. (c) Propagation of the
wave packet with ug = 0 and og = 0.12 in the gapped Abelian Z; spin liquid phase with parameters Jx = Jy, = 1/4,J; = 1/2 and K = 0. The
red data show the initial wave packet, and the subsequent yellow/green/cyan data display snapshots of the wave packet at equally spaced later
times 3J7 € {100, 200, 300}, respectively. The wave packet evolution in this case exhibits no noticeable propagation nor broadening.

this prediction numerically, we choose pg = 0 and og = 0.06, which is one order of magnitude smaller than the bulk energy

gap. The initial wave packet |¢Z£¥0,UE:0,06> is plotted in red in Fig. S18b. The evolution of this wave packet under unitary time
~iHT

evolution e at times 3JT € {100,200, 300} is depicted in yellow/green/cyan in Fig. S18b. We observe the propagation of
the Majorana wave packet in the counterclockwise (positive) direction, consistent with dE /3¢ > 0.

Let us finally contrast the Majorana edge states of the chiral gapped phase to edge states realized in the gapped Abelian Z;, spin
liquid phase. For concreteness, we consider the trivial gapped phase at parameters J, = J, = 1/4, J, = 1/2 and K = 0, which
also corresponds to the data in the bottom of Fig. 2b in the Letter. The bulk and boundary DOS for this phase are displayed in
Fig. S15e. We observe the formation of a zero-energy flat band on the boundary. Due to the somewhat large localization length
of the corresponding eigenstates (indicated with purple arrow in Fig. S15f), the flat band remains visible as a small peak at E = 0
also in the numerically computed bulk DOS.

To illustrate the absence of chiral edge states in this phase, we consider again the wave packet construction in Eq. (S108), in
this case taking as the seed the localized state |/1oc.) With equal-amplitude support on the two sites with the largest value of Re(z)
(one site has Im(z) > 0 while the other one has Im(z) < 0). Choosing ug = 0 and og = 0.12, we obtain the initial state plotted
in red in Fig. S18c. Unitary time evolution with e *H7 at times 3JT = {100, 200, 300}, shown in yellow/green/cyan in Fig. S18c,
indicates that (i) the state does not propagate in any definite direction around the disk and that (i) the state does not noticeably
broaden on the chosen time scale. The absence of clockwise/counter-clockwise propagation confirms the non-chiral character of
the Z, spin liquid phase, whereas the absence of broadening can be seen as a consequence of the flat-band (i.e., dispersionless)
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character of the edge states near E = 0.
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