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Hyperbolic lattices present a unique opportunity to venture beyond the conventional paradigm of
crystalline many-body physics and explore correlated phenomena in negatively curved space. As a
theoretical benchmark for such investigations, we extend Kitaev’s spin-1=2 honeycomb model to
hyperbolic lattices and exploit their non-Euclidean space-group symmetries to solve the model exactly.
We elucidate the ground-state phase diagram on the f8; 3g lattice and find a gapped Z2 spin liquid with
Abelian anyons, a gapped chiral spin liquid with non-Abelian anyons and chiral edge states, and a
Majorana metal whose finite low-energy density of states is dominated by non-Abelian Bloch states.
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Introduction—Among the factors that influence the
collective behavior of quantum materials, lattice geometry
plays a crucial role, from determining the electronic
band structure for weak correlations to geometrically
frustrating conventional orders for strong correlations
[1]. Hyperbolic fp; qg lattices [2–8]—synthetic materials
that emulate regular tilings of two-dimensional (2D) hyper-
bolic space by p-sided polygons with coordination q, with
ðp − 2Þðq − 2Þ > 4 [9]—present a unique opportunity to
explore many-body physics in unusual, non-Euclidean
lattice geometries. While a wealth of phenomena have been
investigated on hyperbolic lattices at the single-particle
level [10–42], much less is known about the interplay of
negative curvature and many-body correlations.
Hyperbolic analogs of prototypical interacting

Hamiltonians such as the quantum Ising, XY, and
Heisenberg models [43–45] and the Bose [46] and
Fermi [45,47,48] Hubbard models have been studied
recently using mean-field theory, spin-wave theory, and
quantumMonte Carlo (QMC). However, the ability of such
methods to reliably capture the bulk properties of hyper-
bolic lattices must be critically assessed. For example, finite
f10; 3g lattices display a low-energy density of states

(DOS) that appears semimetallic [45,47], but the thermo-
dynamic-limit DOS is known to be finite [24], with
important consequences for many-body physics. Thus,
even numerically exact methods such as QMC may suffer
from unusually severe finite-size effects in the hyperbolic
context. This motivates a search for exactly solvable
models, to not only discover interesting emergent phenom-
ena but also benchmark approximate many-body theories
of hyperbolic lattices.
Here, we introduce for the first time an exactly solvable

model of strongly correlated spins on hyperbolic lattices
(Fig. 1). Our model generalizes Kitaev’s honeycomb lattice
model [49] to fp; 3g lattices and can be solved exactly for
any even p ≥ 8. Although the Kitaev model can be
generalized to arbitrary three-coordinated graphs, exact
solvability does not immediately follow. First, a three-edge
coloring of the graph must exist and be explicitly con-
structed, which is in general an NP-complete problem [50].
Second, even with conserved plaquette fluxes [49], the flux
optimization problem is generically hard because of the
exponential growth of flux configurations with system size.
While Lieb’s lemma [51–55] can simplify the problem if
reflection symmetries are present, unlike Euclidean lattices,
noncrystalline structures typically possess at most finitely
many such symmetries, thus exponentially many flux
configurations must still be sampled numerically [56,57].
Here, we resolve both issues by exploiting the space-group
symmetries of hyperbolic lattices [11,19,20]. First, infi-
nitely many non-Euclidean reflection symmetries allow us
to simultaneously solve the three-edge coloring problem
and determine the ground-state flux configuration analyti-
cally. Second, the (noncommutative) translation symmetry
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enables us to efficiently approximate the thermodynamic
limit via hyperbolic band theory (HBT) [11–13]. We study
the model at zero temperature on the f8; 3g lattice and
find two gapped topological phases: a Z2 spin liquid
with Abelian anyons, and a chiral spin liquid with non-
Abelian anyons and chiral Majorana edge modes. Around
the isotropic point in the phase diagram, we also find
a Majorana metal which—unlike Kitaev’s Dirac spin
liquid [49]—has a finite low-energy DOS dominated by
non-Abelian Bloch states [12].
Hyperbolic Kitaev model—We consider hyperbolic

fp; 3g lattices with a three-edge coloring, i.e., an assign-
ment of one of three colors (yellow, red, blue, labeled as
α ¼ x, y, z, respectively) to each edge such that coincident
edges have different colors [Fig. 1(a)]. With an s ¼ 1=2
spin on each site, we define the ferromagnetic (Jα > 0)
hyperbolic Kitaev model (HKM) as

Ĥ ¼ −
X
hj;kiα

Jασ̂αj σ̂
α
k − K

X
½lmn�þαβγ

εαβγσ̂
α
l σ̂

β
mσ̂

γ
n: ð1Þ

The Jα term is an anisotropic exchange interaction between
adjacent sites j, k sharing an α edge hj; kiα. The term
involving the totally antisymmetric tensor εαβγ is an
interaction among a counterclockwise-oriented triplet of
sites n,m, l (denoted ½lmn�þαβγ) that are connected by bonds
hl; miα and hm; niγ , respectively, with β ≠ α, γ the color of

the third bond adjacent to site m. This term can arise as
the leading-order nontrivial effect of a perturbation
−
P

j;α hασ̂
α
j by an external magnetic field h [49], or

through Floquet engineering [58].
Not all graphs are three-edge colorable, but any three-

coordinated bipartite simple graph is according to Kőnig’s
theorem [59]. Although this applies to any infinite fp; 3g
lattice with even p, such a coloring is not unique. In
Appendix A, we describe an algorithm for constructing a
three-edge coloring for any hyperbolic fp; 3g lattice with p
even [see Fig. 1(a) for p ¼ 8] such that Eq. (1) is symmetric
with respect to any (non-Euclidean) bond-cutting reflec-
tion, of which there are three types [Fig. 1(b)]. The coloring
is also compatible with translation symmetry and appro-
priately chosen periodic boundary conditions (PBC), and
can be seen as a hyperbolic generalization of the Kekulé
pattern on the honeycomb lattice [60].
Majorana representation—We now solve the HKM

exactly. At each site j, we introduce the Majorana fermions
b̂αj , α∈ fx; y; zg and ĉj such that σ̂αj ¼ ib̂αj ĉj [49]. Defining

the bond operator ûjk ¼ ib̂αj b̂
α
k on edge hj; kiα, the

Hamiltonian becomes [49,61]

Ĥ ¼
X
hj;kiα

Jαûjkiĉjĉk þ K
X

½lmn�þαβγ
ûlmûmniĉlĉn: ð2Þ

While Ĥ in Eq. (2) acts on the extended Hilbert space, Ĥ in
Eq. (1) only acts on the physical Hilbert space of the spin
system, defined as the common þ1 eigenspace of the Z2

gauge transformations D̂j ¼ b̂xj b̂
y
j b̂

z
jĉj.

Because the ûjk commute with Ĥ and each other, we
replace them by their eigenvalues ujk ¼ �1 and study the
resulting quadratic Majorana Hamiltonian. Since the bond
operators are not gauge invariant, we consider the
Wilson loops ŴðlÞ ¼ Q

hj;kiα ∈l σ̂
α
j σ̂

α
k along closed paths

l. In the Majorana representation, they take the form
ŴðlÞ ¼ Q

hj;kiα ∈l ð−iûjkÞ. On an infinite hyperbolic lat-
tice, all ujk are (up to gauge transformations) fully
determined by the Wilson loops ŴP around the individual
plaquettes P, measuring the corresponding flux. On com-
pactified PBC clusters with genus g, plaquette fluxes can
only be changed in pairs, and there also exist Wilson loops
along 2g noncontractible paths [22].
Exact solution of the flux problem—For K ¼ 0, the

ground-state configuration of plaquette fluxes can be
determined analytically from symmetry. First, Lieb’s
lemma on reflection positivity [51–55] implies that, in
the ground state, the gauge variables ûjk lying on either side
of a mirror line are related by reflection, up to gauge
transformations. Since our model is reflection symmetric
with respect to any bond-cutting mirror line for any choice
of parameters Jα [Fig. 1(b)], we can consider each plaquette
separately.

FIG. 1. (a) Hyperbolic Kitaev model on the f8; 3g lattice with
two sublattices (white and black dots). Symmetric three-edge
coloring (yellow, red, and blue, representing x, y, and z) shown
inside the primitive cell (green octagon with opposite edges
identified). Adjacent sites j, k form a bond hj; kiz; sites n, m, l
form an oriented triplet ½lmn�þxyz. In the Majorana representation,
these generate the bond operator ûjk and a next-nearest-neighbor
term (dashed black arrow), respectively. The symmetry of the
model is depicted by the gray or white triangles. (b) Application
of Lieb’s lemma to determine the ground-state flux sector for
three representative plaquettes. Three independent mirror lines
(dashed geodesics) cut bonds of a different color. Separately for
each plaquette, reflection positivity with respect to one of them
implies ground-state bond eigenvalues ujk ¼ þ1 as indicated by
arrows from k to j (up to gauge transformations). This constrains
the gauge-invariant plaquette operators ŴP consistently through-
out the lattice: here WP ¼ −1 for all P.
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Given a plaquette, we select one of the reflection
symmetries and denote by j0 the image of site j under
that reflection. We can always choose a gauge where uj0j ¼
þ1 for the bonds crossing the mirror line [dashed geodesics
in Fig. 1(b)]. Then, Lieb’s lemma implies that the remain-
ing reflection-related bonds satisfy ujk ¼ uk0j0. Indeed,
under reflection symmetry the term ujkiĉjĉk is mapped
to ujkð−iÞĉj0 ĉk0 ¼ ujkiĉk0 ĉj0 (reflection is represented anti-
unitarily for Majorana fermions). Thus, for a fp; 3g lattice
with p even,

WP ¼ ð−iÞp × ð−1Þ × ðþ1Þp=2−1 ¼ −ð−1Þp=2; ð3Þ

where ð−iÞp follows from the definition of WP, (−1) from
the opposite orientation (relative to the oriented Wilson
loop) of the two bonds cut by the mirror line, and ðþ1Þp=2−1
from the remaining ðp=2 − 1Þ reflection-related pairs of
bonds each having equal orientation. Unlike in the case of
the coloring studied traditionally [49], Eq. (3) applies for
any choice of couplings Jα.
The honeycomb (f6; 3g) lattice has p=2 ¼ 3, such that

WP ¼ þ1, while in our example, p=2 ¼ 4, thus the ground
state has homogeneous π flux (WP ¼ −1). By further
exploring all 26−1 ¼ 32 possible translation-invariant flux
configurations on the infinite f8; 3g lattice, we find that, in
agreement with Eq. (3), the homogeneous π-flux configu-
ration results in the lowest many-fermion ground-state
energy, see Appendix D. For concreteness, we sub-
sequently focus on the f8; 3g lattice.
Fermionic spectrum—Having determined the ground-

state flux sector, we next study the spectrum of fermionic
excitations as a function of the couplings Jα. The relevant
quadratic Majorana Hamiltonian Ĥ ¼ ði=4ÞPj;k Ajkĉjĉk
possesses hyperbolic translation symmetry, thus we diag-
onalize it using HBT [11–13]. To capture the non-Abelian
Bloch states [12] characteristic of hyperbolic reciprocal
space, we generalize the supercell method [13] to quadratic
Majorana Hamiltonians, see Appendix B. We use a
coherent sequence [13,25,26] of five supercells containing
up to 2048 sites, obtained from HYPERCELLS [13,81–83],
and perform random sampling of momenta using
HYPERBLOCH [84]. From the fermionic spectrum, we
deduce the DOS ρðEÞ and corresponding spectral gap
ΔE as described in Appendix C. To complement the
supercell method based on HBT, we additionally compute
ρðEÞ at selected points in the phase diagram using the real-
space continued-fraction method [24,85,86] on PBC clus-
ters and finite flakes with open boundary conditions (OBC)
containing ∼108 sites [61].
Majorana metal—We first consider the case K ¼ 0. The

ΔE phase diagram in Fig. 2(a) shows a gapless phase (M)
around the isotropic point Jx ¼ Jy ¼ Jz (see inset) and a
gapped phase away from it (G). Representative DOS
computed from different methods are in excellent

agreement [Fig. 2(b)]. Our data suggests the gapless phase
M is confined to the isotropic point, or at most a small
region around it [Fig. 3(b)]. The phase is characterized by a
finite DOS at E ¼ 0 in sharp contrast to the linearly
vanishing DOS ρðEÞ ∝ jEj associated with the Dirac
spectrum on the honeycomb lattice [49]. Thus, unlike
Kitaev’s Dirac spin liquid, the f8; 3g HKM realizes a
Majorana metal. Crucially, Abelian HBT alone incorrectly
predicts a vanishing DOS ρðEÞ ∝ jEj3 at low energies
arising from conical singularities in the 4D Brillouin zone
of Abelian Bloch states. However, the latter only capture
particular slices through the full reciprocal space which is
dominated by non-Abelian Bloch states [18]. Thus, the
finite DOS here is a direct consequence of non-Abelian
Bloch physics, which is absent for Euclidean lattices.
Similar phenomenology, where non-Abelian Bloch states
drastically alter the low-energy DOS, has been observed
in Ref. [34].
Z2 spin liquid—To better understand the nature of the

gapped (G) phase away from the isotropic point, we study
the HKM in the limit of extreme coupling anisotropy,
Jx; Jy ≪ Jz, where the fermion gap ΔE=ð3JÞ ≈ 4

[Fig. 2(a)]. When Jx ¼ Jy ¼ 0, the model reduces to
decoupled Ising dimers on z-bonds, each of which mini-
mizes its energy by adopting one of two ferromagnetic
configurations (↑↑ or ↓↓), resulting in a macroscopic
ground-state degeneracy. This degeneracy is lifted at small
but nonzero Jx, Jy, and the nature and spectrum of the
resulting low-energy excitations can be determined from an
effective Hamiltonian obtained by degenerate perturbation

FIG. 2. (a) Phase diagram of the spectral gap ΔE for K ¼ 0 in
the plane Jx þ Jy þ Jz ¼ 3J. Inset: region near the isotropic
point (Jx ¼ Jy ¼ Jz ¼ J) where the gap vanishes (black), sepa-
rating a Majorana metal (M), from the gapped (G) spin-liquid
phase. (b) Low-energy fermionic DOS (top) at the isotropic point,
(middle) slightly away from it, and (bottom) deep in the
anisotropic region, calculated using the supercell method (sc-
HBT; 2048 sites) and the continued-fraction method applied to
clusters with periodic (cf-PBC) and to flakes with open boundary
conditions (cf-OBC) with ∼108 sites.
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theory [49,87,88]. We first find that the HKM on the f8; 3g
lattice maps exactly onto a model of effective spin-1=2
degrees of freedom and hardcore bosons on the
Archimedean (8, 4, 8, 4) lattice. The latter is the lattice
obtained by collapsing the z-bond dimers into effective
sites, and contains alternating square (□) and octagonal
( ) plaquettes. The spin states represent the two ferro-
magnetic configurations of each dimer, and bosons corre-
spond to excitations out of the low-energy ferromagnetic
subspace, with large energy cost ΔE=2 ≈ 2Jz.
To focus on the low-energy physics, we project onto the

zero-boson subspace, and obtain the effective spin-1=2
Hamiltonian [61]:

ð4Þ

where Ŵ areWilson loop operators on the (8, 4, 8, 4) lattice,
and we have set Jx ¼ Jy ¼ Jk here for simplicity. The Ŵ
operators all commute with each other, and are in fact
equivalent to the plaquette operators ŴP introduced earlier.
Thus, the positive couplings in Eq. (4) imply that ŴP ¼ −1
in the ground state, consistent with the exact result Eq. (3).
Second, Eq. (4) implies that the lowest-energy excitation is a
Z2 vortexwith and energy cost∼J8k=J

7
z , much less

than the fermion gap ΔE=2 ≈ 2Jz in that limit. Finally, the
effective model (4) can be further mapped to a hyperbolic
analog of the toric code [89] on the f8; 4g lattice, i.e., a
hyperbolic surface code [90–95]. This last mapping reveals
that the□ and vortices obey bosonic self-statistics but are
mutual semions, establishing that the G phase is a topo-
logically ordered Z2 spin liquid [96].
Chiral spin liquid—A different type of gapped spin

liquid is obtained when the emergent Majorana fermions
carry a nonzero Chern number. This requires time-reversal

symmetry to be broken, which happens for K ≠ 0.
Focusing first on the isotropic point, where for K ¼ 0
the fermionic spectrum is gapless, a gap opens at infini-
tesimal K ≠ 0 and subsequently increases with increasing
K [Fig. 3(c)]. Thus, for finite K, a new gapped phase χ
develops around the isotropic point and remains separated
from G by a circular gapless line in parameter space
[Fig. 4(a), left half]. From cuts through the phase diagram
for different values of K [Fig. 3(a)], we find that the χ
region expands with increasing K.
The Chern number C determines the properties of

anyonic excitations as well as the existence and character
of topologically protected boundary modes [49]. While in
Euclidean translation-invariant systems, C can be easily
computed in momentum space, we rely here on a real-space
formulation [49] and compute it on finite PBC clusters [61].
Figure 4(a) shows that the gapped χ phase around the
isotropic point has odd Chern numberC ¼ −1, establishing
it as a chiral spin liquid with non-Abelian anyons [49],
while C vanishes in the gapped Z2 spin liquid (G) phase.
Finally, the nonzero Chern number suggests gapless

chiral edge modes, which we investigate in a disk-shaped
OBC flake at the isotropic point. For a sufficiently large
flake, an approximate continuous rotation symmetry
emerges on the edge, allowing us to introduce an approxi-
mate angular momentum quantum number l, as discussed
in Appendix E. In Fig. 4(b), we show the corresponding
angular dispersion together with a measure pedge of edge
localization defined as the integrated probability density
within the outer 10% of the hyperbolic radius of the flake.
Bulk modes (blue) generally do not have sharp angular

FIG. 3. Spectral gap ΔE as a function of Jz and K. (a) Vertical
cut through the phase diagram in Fig. 2(a) for different values of
K (see legend below panel), with Jx ¼ Jy ¼ ð3J − JzÞ=2.
(b) Close-up of (a) for K ¼ 0 showing the gap opening as a
function of Jz obtained using the three methods (see legend below
panels and caption of Fig. 2). (c) Gap opening with K at the
isotropic point Jx ¼ Jy ¼ Jz ¼ J.

FIG. 4. (a) Phase diagram for K=ð3JÞ ¼ 0.1 with the spectral
gap ΔE shown in the left half and the Chern number C computed
on a PBC cluster (2048 sites) in the right half. The chiral (χ) and
Z2 (G) spin liquid phases are separated by a phase transition with
a gap closing and an integer change in C. (b) Energy E vs angular
momentum l for Jx ¼ Jy ¼ Jz ¼ J, K=ð3JÞ ¼ 0.1, computed on
an OBC disk (896 sites). Color encodes the degree of edge
localization pedge, and opacity the weight of the corresponding l.
Inset: l∈Zþ 1

2
(red dots) at low energies without a vortex, and

l∈Z (red crosses) with a Z2 vortex at the center of the disk.
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momentum, but a branch of states sharply peaked at a
single l and strongly localized on the edge (red) crosses the
bulk gap; we identify it with the single dispersive band of
chiral edge states expected for the C ¼ −1 topology. In
contrast to Euclidean lattices, there is an extensive number
of such edge states due to the finite boundary-to-bulk ratio
in hyperbolic geometry.
For edge modes described by a chiral Majorana con-

formal field theory with chiral central charge c− ¼ 1=2, we
expect a linear low-energy angular dispersion E ∝ l with
half-integer quantization l∈Zþ 1

2
[97,98]. The inset in

Fig. 4(b) (red dots) confirms this expectation, notably the
absence of a zero-energy mode with l ¼ 0 ∉ Zþ 1

2
.

Inserting a vortex through the center of the disk binds
a Majorana zero mode there, shifts l by 1=2 such that
l∈Z [97,98], and induces a second zero-energy mode on
the boundary (red crosses in the inset).
Conclusion—In summary, we introduced for the first time

an exactly solvable model of strongly correlated hyperbolic
quantum matter, the hyperbolic Kitaev model (HKM). The
non-Euclidean space-group symmetries of hyperbolic latti-
ces play a crucial role in the model’s construction and
solution. In contrast to previous noncrystalline extensions of
the Kitaev model, reflection symmetries across geodesics
enable an exact analytical determination of the ground-state
flux sector via Lieb’s lemma, and noncommutative trans-
lation symmetries allow for an efficient determination of
thermodynamic-limit properties via hyperbolic band theory.
Our detailed study of the HKM on the f8; 3g lattice reveals
both Abelian and non-Abelian gapped topological spin
liquids, as well as a gapless spin liquid that, unlike
Kitaev’s Dirac spin liquid, has a finite low-energy density
of states dominated by Majorana non-Abelian Bloch states,
a unique feature of hyperbolic space.
Our Letter opens several vistas for future study. On the

theoretical side, given the degree of analytical control the
HKM affords, one should investigate whether the bulk
hyperbolic spin liquids found here realize interesting
“holographic spin liquids” on the edge [99–105]. Unlike
Kitaev’s (unique) honeycomb lattice in 2D, infinitely many
fp; 3g lattices are now open to investigation, as well as
other possible extensions of Kitaev physics [106–111]. On
the experimental side, the spin-spin interactions in Eq. (1)
could potentially be realized via qubit-photon interactions
[112] in circuit quantum electrodynamics [2] with the
particular spin interactions implemented using Floquet
engineering [58] of Ising-type interactions [113,114].
For applications to quantum error correction, implementing
a two-spin interaction in the anisotropic coupling limit
Jz ≫ Jx; Jy might represent a simpler path towards hyper-
bolic surface codes than directly engineering the requisite
multispin interactions [90,91,115].

Note added—While finalizing this manuscript, we
became aware of an independent work [116] studying

the Kitaev model on the f9; 3g lattice, where the authors
identify a gapless chiral Z2 spin liquid.
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End Matter

Appendix A: Symmetric 3-edge coloring—The three
edges coincident on a vertex of the f2m; 3g lattice are in
one-to-one correspondence with the three sides of a face
of the dual f3; 2mg lattice, which is an equilateral
triangle [see white or gray triangles in Fig. 1(a), for
m ¼ 4]. Those three sides belong to distinct equivalence
classes under reflections in the sides of any equilateral
triangle, which are bond-cutting reflection symmetries of
the original f2m; 3g lattice. By coloring the sides of the
equilateral triangles according to their equivalence class,

we obtain a three-edge coloring which respects those
reflection symmetries and allows us to use Lieb’s lemma.
Mathematically, the edges of the f2m; 3g lattice form the

right coset space HnG where the hyperbolic triangle group
G ¼ Δð2; 3; 2mÞ is the space group of the f2m; 3g lattice
[19,20] and H is the subgroup of G which leaves a given
edge invariant (stabilizer subgroup). Further quotienting
out reflections in the sides of the equilateral triangles,
which form the subgroup K ¼ Δðm;m;mÞ of G, we obtain
the double coset space HnG=K which contains only three
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elements, i.e., three colors. For computations using hyper-
bolic band theory the chosen Bravais unit cell or supercell
must be compatible with this edge coloring. This is ensured
if the corresponding translation group Γ is a normal
subgroup of both G and K. In Sec. I of the
Supplemental Material [61], we spell out the above
mathematical arguments in more rigor.

Appendix B: Majorana hyperbolic band theory—The
generic quadratic Majorana Hamiltonian Ĥ ¼
i
4

P
j;k Ajkĉjĉk with A⊤ ¼ −A and fĉj; ĉkg ¼ 2δjk defined

on a hyperbolic lattice with translation group Γ can be
written in reciprocal space [11,12] using the generalized
Fourier transform [35]

âðKÞμν;j ¼
1ffiffiffiffiffiffiffiffi
2jΓjp X

γ ∈Γ

ffiffiffiffiffiffi
dK

p
ĉγ;jD

ðKÞ
νμ ðγÞ; ðB1Þ

where K runs over all irreducible representations (IRs)
DðKÞ and μ, ν run from 1 to dK , the dimension of DðKÞ.
Defining iAðKÞ ¼ P

γ ∈Γ iAðγÞ ⊗ DðKÞðγÞ, we obtain

Ĥ ¼ i
2

X
K

X
μ;ν;ν0

X
j;k

AðKÞ
ν;j;ν0;kâ

ðKÞ
μν;j

†âðKÞμν0;k: ðB2Þ

Diagonalizing the Hermitian matrices iAðKÞ, giving

operators d̂ðKÞμλ;l and eigenvalues ελ;lðKÞ, finally results in

Ĥ ¼
X
K;λ;μ;l

ελ;lðKÞ>0

ελ;lðKÞ
�
d̂ðKÞμλ;l

†d̂ðKÞμλ;l −
1

2

�
: ðB3Þ

Analogously to the Euclidean case, the sum is
constrained to positive energies due to the reality of the
Majorana fermions, which relates states corresponding to
conjugate IRs. The derivation of Eq. (B2) and (B3)
amounts to straightforward algebraic manipulations, see
Supplemental Material [61], Sec. IV.

Appendix C: Extrapolation using the supercell method
—The supercell method [13] provides a framework for
including the effect of higher-dimensional IRs DðKÞ by
sampling one-dimensional IRs on successively larger
unit cells (supercells). To estimate the true value of a
given quantity, we compute it for supercell sizes
N ∈ f1; 4; 16; 32; 128g (see Supplemental Material [61],
Sec. V) and subsequently extrapolate N to ∞. Below,
we discuss the details of this procedure for the ground-
state (GS) energy and for the fermionic spectral gap.
The GS energy is given by E0 ¼ − 1

4
jελ;lðKÞj with the

average running over the full spectrum. On the nth super-
cell, we randomly sample Ns momenta from the corre-
sponding Abelian Brillouin zone ABZðnÞ and compute

E0ðNðnÞÞ ¼ −
1

4Ns

X
k∈ABZðnÞ;l

jεlðkÞj: ðC1Þ

Weextrapolate using aweighted least-squares fit withmodel

E0ðNÞ ¼ E0 þ
u
N
þ v
N2

; ðC2Þ

and weights N, excluding the primitive cell n ¼ 1. In
Fig. 5, we demonstrate this for the homogeneous π-flux
configuration. The resulting estimate forE0 is given together
with the parameter error reflecting a 95% confidence
interval.
The spectral gap ΔE ¼ 2Eg is the extent of the interval

of energies ½−Eg; Eg� with vanishing density of states
(DOS). We estimate ΔE through the integrated DOS

N ðE;NÞ ¼
Z

E

0

dE0ρðE0; NÞ; ðC3Þ

obtained by constructing a cumulative histogram of the
computed eigenvalues. It shows a transition between
the region E < Eg where N ðE;NÞ is suppressed for
increasing N and the region E > Eg where it is enhanced,
see Figs. 6(a) and 6(b). The extrapolation of N ðE;NÞ
simultaneously takes into account the effects due to non-
Abelian Bloch states and finite sampling of Abelian Bloch
states without being overly sensitive to the chosen energy
resolution (due to the integration).
Using a maximum-likelihood algorithm (see

Supplemental Material [61], Sec. V C), we fit N ðE;NÞ
as a function of 1=N (for N > 1) in the vicinity of Eg using
the linearized model

N ðE;NÞ ¼ N 0ðEÞ þ
sðEÞ
N

; ðC4Þ

and weights N to account for the larger weight of non-
Abelian states in larger supercells. Some examples of fits
are shown in Fig. 6(b). From each fit, we extractN 0 and the
slope s together with their 95% confidence intervals,

FIG. 5. Extrapolation of the ground-state energy E0ðNÞ for the
homogeneous π-flux configuration. The data points show the
values obtained using Eq. (C1) and the line is the fit according to
Eq. (C2) (excluding n ¼ 1). We find E0=ð3JÞ ¼ −0.25640ð1�
6Þ from a fit with coefficient of determination 1 − R2 ∼ 10−12.
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see Figs. 6(a) and 6(c), respectively. The extrapolated
integrated DOS N 0ðEÞ is expected to change from 0 to
a positive value at Eg. On the other hand, the slope sðEÞ is
expected to change its sign from positive below Eg to
negative above. From both datasets, we obtain estimates of
Eg including uncertainties due to the confidence intervals.
Results with combined uncertainties are shown in Fig. 3 as
a function of Jz and K (see also Supplemental Material
[61], Sec. VII B).
For sufficiently large ΔE, this reduces to finding

the intersection of N ðEÞ for the largest two supercells.
We employed this computationally more efficient approach
to obtain the full phase diagrams in Figs. 2(a) and 4(a).

Appendix D: Ground-state flux sector—To verify that
the ground-state flux sector is indeed the homogeneous
π-flux configuration both for K ¼ 0 and K ≠ 0, we
study the ground-state energy E0 in different flux
sectors. For computational reasons, we restrict the
analysis to translation-invariant flux configurations with
no net flux per unit cell. Since a primitive cell has six
faces and the number of plaquettes with WP ¼ −1 has
to be even, there are 26−1 ¼ 32 such configurations,
reducing to six equivalence classes by symmetry. The
results are shown in Fig. 7 for K ¼ 0 and K=ð3JÞ ¼
1=6 (see also Supplemental Material [61], Sec. VII A
for extended figures).

Appendix E: Chiral edge states—To extract the dis-
persion EðlÞ of the edge states in the chiral phase,
plotted in Fig. 4(b), we assign to each eigenstate jψni of
the Majorana Hamiltonian on a circular flake two
quantities: (i) degree of localization near the edge
pn;edge, and (ii) angular momentum ln. We define the
first as pn;edge ¼

P
j∈ edge jψnðjÞj2, where “j∈ edge”

indicates sites located within the outer 10% of the
hyperbolic distance to the boundary. The computed
values exhibit a sharp jump in pedge at energies
E=ð3JÞ ≈�0.6, see Fig. 4(b).

Because of the discrete rotation symmetry, ln is
defined only modulo 8. However, since low-energy states
have a wavelength much larger than the lattice spacing,
we anticipate the emergence of an unbounded l
near E ¼ 0. In the continuum limit, the eigenvalue l is
associated with eilφ, where the phase of the wave
function grows with angular coordinate φ. Therefore,
cn;l ¼ jPj∈ sites e

−2ilφðjÞψ2
nðjÞj∈ ½0; 1� estimates the prob-

ability that jψni carries angular momentum l∈Z=2. The
computed values cn;l are dominated by a single branch,
l ¼ ln. The branch has approximately linear dispersion
EðlÞ, with l∈Z (l∈Zþ 1

2
) in the absence (presence) of a

vortex at the center of the disk as shown in Fig. 4(b). For
technical details, see Supplemental Material [61], Sec. X.

(a) (b) (c)

FIG. 6. Estimation of the spectral gap. Integrated density of statesN ðE;NÞ for Jx ¼ Jy ¼ Jz ¼ J andK=ð3JÞ ¼ 0.1. (a)N ðE;NÞ as a
function of energy E for different supercells (see inset legend for the supercell size N), including the extrapolated value N 0ðEÞ
(“N ¼ ∞”) with 95% confidence intervals shown as error bars. (b)N ðE;NÞ as a function of the inverse supercell size 1=N for the values
of energy indicated by the correspondingly colored arrows in panel (c). Dashed lines are guides to the eye and the solid lines are linear
maximum-likelihood fits. (c) The slope sðEÞ extracted from the same fits as a function of energy E; error bars indicate 95% confidence
intervals.

FIG. 7. Ground-state energy for the 32 translation-invariant flux
configurations with zero net flux per unit cell for Jx ¼ Jy ¼
Jz ¼ J and different values of K (see legend). Error bars indicate
95% confidence intervals. The flux configurations fall into the six
equivalence classes (separated by the vertical gray lines) shown at
the top with white (blue shaded) octagons denoting plaquettes
with π (0) flux. In both cases, the homogeneous π-flux configu-
ration has lowest energy.
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