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We demonstrate how tabletop settings combining hyperbolic lattices with nonlinear dynamics universally
encode aspects of the bulk-boundary correspondence between gravity in anti–de-Sitter (AdS) space and
conformal field theory (CFT). Our concrete and broadly applicable holographic toy model simulates
gravitational self-interactions in the bulk and features an emergent CFT with nontrivial correlations on the
boundary.Wemeasure the CFT data contained in the two- and three-point functions and clarify how a thermal
CFT is simulated through an effective black hole geometry. As a concrete example, we propose and simulate
an experimentally feasible protocol to measure the holographic CFT using electrical circuits.
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The holographic principle as realized by the AdS/CFT
correspondence postulates a deep connection between two
of the most intriguing, yet unfathomable phenomena in
modern physics [1–4]: scale invariance close to second-
order phase transitions, described by conformal field
theories (CFTs) [5], and quantum gravity in curved space-
times. The conjecture states that gravity in a negatively
curved space is dual to a CFTon the boundary of that space.
Furthermore, the presence of a black hole in the bulk results
in a thermal CFT, with the temperature given by the
Hawking temperature. While numerous calculations indi-
cate the validity of the correspondence, an experimental
verification is complicated in particular by the need to
observe or simulate graviton-graviton interactions, since
only these give rise to nonvanishing three- or four-point
boundary correlation functions, and nontrivial CFT data.
The goal of this work is to construct a concrete holo-

graphic toy model for the AdS/CFT correspondence that
can be realized in the laboratory. We show that, with
the right four ingredients, a large class of realistic and
experimentally feasible low-energy models features

holography through conformal boundary correlations. As
a concrete example, we demonstrate how electrical circuits
with nonlinear circuit elements can achieve this milestone,
but our universal model is applicable to other experimental
platforms and constitutes a theoretically intriguing model in
itself. With the setup, we are able to emulate three-point
functions, characterize the CFT data, and clarify how
thermal effects are incorporated.
The four ingredients of our holographic toy model are

(i) a lattice realization of anti–de-Sitter (AdS) space
through hyperbolic lattices [6–49], now routinely imple-
mented in circuit quantum electrodynamics and coplanar
waveguides [6,50], topoelectrical circuits [20,23,29,30],
topological photonics [51], and mechanical elastic lattices
[52]; (ii) nonlinear dynamical equations to emulate gravi-
tational self-interactions, realized by local qubit-photon
interactions [16,53,54], nonlinear or active circuit elements
[55–59], nonlinear optics [60,61], or spring hardening;
(iii) effective black hole geometries to emulate temperature
by using type-II hyperbolic lattices [35,62–64]; (iv) a
theoretical framework and experimental protocol to com-
pute and measure boundary correlation functions. We
demonstrate that with (i)–(iv) even classical platforms
are holographic, corresponding to the limit where weakly
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coupled semiclassical bulk gravity is dual to a strongly
coupled CFT, as reviewed in [4].
Our work considerably extends previous works on

holographic aspects of hyperbolic lattices. Power-law
scaling of two-point boundary correlators has been dem-
onstrated at zero temperature in the important works
[10,13,35], together with the massless contact limit of
the four-point function [13], the introduction of black holes
through type-II lattices [35], and the emergence of the Ryu-
Takayanagi formula [35]. However, our systematic study of
higher-point correlation functions and their ensuing CFT
data, precise characterization of thermal correlations, theo-
retical framework and concrete experimental protocol to
measure boundary correlations, and simulation of an
experimental setup satisfying (i)–(iv) is unprecedented.
This is critical for a thorough investigation of both the
duality, and consistency of the associated CFT. Here we
achieve this milestone for the first time by studying
interacting hyperbolic matter on the lattice.
Holographic lattice model—Classical or quantum theo-

ries of gravity are models where the metric tensor g
and distance line element ds2 ¼ P

α;β gαβdx
αdxβ fluctuate

in time and space. In two imaginary-time spacetime
dimensions, the metric can be parametrized by a single
real field φðzÞ as ds2 ¼ eφðzÞjdzj2 (isothermal coordinates),
where z ¼ xþ iy. Although the usual Einstein-Hilbert
action is nondynamical in two dimensions, a dynamical
action principle for gravity results from minimizing the
Liouville gravity action [65,66]

SLG½φ� ¼
Z

d2z

�
1

2
ð∇φÞ2 þ 2

l2
eφ
�
: ð1Þ

The term −1=l2 plays the role of a negative cosmological
constant. The stationary solution φ⋆ðzÞ that minimizes
the action is the hyperbolic Poincaré disk metric
ds2⋆ ¼ ð2lÞ2jdzj2=ð1 − jzj2Þ2. Fluctuations about this sol-
ution, φ ¼ φ⋆ þ ϕ, follow the imaginary-time action [67]

Sgrav½ϕ�¼SLG½φ⋆þϕ�−SLG½φ⋆�

¼
Z

d2z
ð1−jzj2Þ2

�
1

2
ϕð−□þm2Þϕþ ϕ3

3l2
þ ϕ4

12l2
þ…

�
:

ð2Þ

We may interpret ϕðzÞ as a gravitonlike mode, since it
parametrizes small metric fluctuations. Importantly,
dynamical gravity corresponds here to a real scalar field
ϕ propagating in its own hyperbolic background with
□ ¼ ð2lÞ−2ð1 − jzj2Þ2∇2 the Laplace-Beltrami operator
[ingredient (i)], and nonlinear terms like ϕ3 and ϕ4 corre-
spond to gravitational self-interactions [ingredient (ii)]. We
choose m2l2 > −1=4 above the Breitenlohner-Freedman
bound for a stable theory [33].

The continuum action (2) can be simulated on discrete
hyperbolic lattices using the dictionary of Ref. [11], which
yields the universal holographic lattice action

SðfϕμgÞ ¼ −
1

2

X
μ;ν

ϕμAμνϕν þ
X
μ

�
m̂2

2
ϕ2
μ þ

u
3!
ϕ3
μ

�
: ð3Þ

Herein,ϕμ ¼ ϕðzμÞ is the field variable defined on the sites zμ
of a graph or lattice G with adjacency matrix A. Equation (3)
represents a generic tight-binding Hamiltonian realizable on
the platforms discussed in the introduction, and is a universal
low-energy limit of more complicated Hamiltonians. The
parameters m̂2 and u are tunable in experiment and can be
matched to the Liouville action (1) [67]. We neglect higher-
order interaction terms beyond ϕ3 for simplicity, resulting
in a model that deviates from Liouville gravity through
this omission.
The choice of graph G determines the curved bulk space

on which the action is simulated. Two-dimensional imagi-
nary-time AdS space is emulated by hyperbolic fp; qg
lattices with ðp − 2Þðq − 2Þ > 4, labeled type-I hereafter.
Black holes are realized by identifying points on two
geodesics in a type-I geometry. This is equivalent to a
type-II ring graph [35] obtained by a squash-and-wrap
procedure, see Fig. 1. The squash step is zμ ↦ ζμ ¼
ð2=πÞ ln½ð1þ zμÞ=ð1 − zμÞ�, which produces an infinite
strip, from which a finite strip of width w is obtained with
its truncated edges identified, followed by the wrap step
ζμ ↦ ẑμ ¼ e2πiðζμþiÞ=w yielding a ring. When applied to the
Poincaré disk metric, this results in a time slice of the three-
dimensional Bañados-Teitelboim-Zanelli (BTZ) black hole
metric [35,62–64,67] given by

ds2II ¼
�
lw
4

�
2 jdẑj2
jẑj2cos2½π

2
ð1 − ln jẑj= ln r̂HÞ�

; ð4Þ

which suggests the black hole interpretation on the lattice.
The black hole temperature is T ¼ w=8πl with horizon
radius r̂H ¼ e−2π=w. In our numerical construction [67], we
have w ¼ kP, where k is an integer that we can choose
freely and P ¼ Pðp; qÞ is a lattice-dependent constant. By
varying k, p, q, we can access a large, albeit discrete set of
temperatures [ingredient (iii)].
Bulk-boundary correspondence—To study holography,

we divide the graph G, which may be either type-I or
type-II, into its bulk and boundary components, G̊ and ∂G,
such that G ¼ G̊ ∪ ∂G. We label generic sites on G by Greek
letters μ, ν, whereas bulk and boundary sites are labeled by
Roman letters i, j and a, b, respectively. We then consider
fixed boundary field values given by ϕa ¼ Ja. The asso-
ciated bulk partition function reads

ZðfJagÞ ¼
Z �Y

i

dϕi

�
e−Sðfϕi;ϕa¼JagÞ: ð5Þ
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Note that we only integrate over the bulk field values. The
bulk-boundary correspondence asserts that ZðfJagÞ is
the generating function for a CFT on the boundary [2,3].
The associated connected n-point correlation functions for
some boundary field Oa are given by

hOa1 ;…;Oani ¼
∂
n lnZ

∂Ja1 � � � ∂Jan

����
J¼0

ð6Þ

[ingredient (iv)]. Properties like spin or scaling behavior
of Oa are determined by the bulk theory, but no action
underlying the CFT is specified by the duality per se. An
important future research inquiry is to explore whether a
representative CFT action can be constructed in the holo-
graphic toy model. Furthermore, adding more fields and
symmetries to the bulk action, the consistency of richer
dual CFTs can be probed.
The holographic properties of the lattice model (3) can be

studied theoretically in the perturbative regime u ≪ 1, which
mirrors the semiclassical limit of the AdS/CFT correspon-
dence where only tree-level diagrams contribute [67]. The
two-point function for u ¼ 0 reads

hOaObi ¼ −Mab þ
X
i;j

MaiGijMjb: ð7Þ

Here, Mμν ¼ ðG−1Þμν ¼ −Aμν þ m̂2δμν is the bare inverse
propagator, with m̂2 ¼ qþ qh2m2l2 relating to the physical

mass m through a dimensionless lattice constant h ¼
f1 − ½sin2ðπ=qÞ=cos2ðπ=pÞ�g1=2 [11,38]. Approximately,
hOaObi ≈Gab is the bulk propagator extrapolated to the
boundary sites a, b. For the three-point function, we have

hOaObOci ¼ u
X
i

BaiBbiBci ð8Þ

with Bai ¼
P

j MajGji the boundary-to-bulk propagator.
This is a Witten diagram, where the bulk site i connects
the boundary sites a, b, c, see Fig. 3(a), and the largest
contribution comes from graph-geodesic paths. Remarkably,
this perturbative formula captures the CFT correlations also
on the lattice. All n-point functions with n ≥ 3 vanish for
u ¼ 0 in our model, emphasizing again the importance
of interactions embodied by uϕ3 in Eq. (3). A four-point
function appears at order u2 [4].
Correlation functions and CFT data—The character-

istic forms of the two- and higher-point correlation
functions of a CFT distinguish it from a mere scale
invariant theory. In particular, the two- and three-point
functions are fully determined by two parameters as
part of their CFT data, the scaling dimension Δ and
three-point coefficient C3,

hOaObi ≃
1

ðdabÞ2Δ
; hOaObOci ≃

C3

ðdabdacdbcÞΔ
: ð9Þ

FIG. 1. Hyperbolic flakes and black hole geometry. (a) Starting from a Poincaré disk (type-I geometry, coordinates z ¼ reiθ), we
create a black hole by identifying points on two geodesics (shown in green). Equivalently, we squash the disk to form a strip of width w
and then wrap it into a ring (type-II geometry, coordinates ẑ ¼ r̂eiθ). This identification creates two separate Universes, 1 and 2, each
with a holographic boundary, connected through an Einstein-Rosen (ER) bridge (dashed line) [68]. This line corresponds to the
bifurcation point of an eternal black hole horizon. (b) Applying the squash-and-wrap procedure to a hyperbolic fp; qg flake creates a
type-II flake, which emulates a black hole with Hawking temperature T ¼ w=8πl. Herein, w ¼ kP, with k an integer representing the
number of repeated cells in the strip (k ¼ 5 in the plot), and P ¼ Pðp; qÞ a constant. (c) Type-I and -II hyperbolic flakes of a f3; 7g
tessellation with some graph-shortest-distance paths connecting boundary sites. These paths are pivotal for the boundary-boundary
correlations. (d) Schematic Penrose diagram with space and time as the x axis and y axis, respectively. The hyperbolic lattice is located
on a slice of constant time (gray line).
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Here we normalize the boundary fields Oa such that
the numerator of the two-point function is unity. The
function dab determines the distance between the sites
a, b in the CFT. A hallmark of the continuum AdS/CFT
correspondence is that Δ and C3 are tunable by varying
the bulk parameters m2l2 and u. We now show that the
same is true for our holographic lattice model.
The boundary two- and three-point functions determined

from Eqs. (7) and (8) are summarized in Figs. 2 and 3,
respectively. They agree with the expected behavior
through the identification [67]

dab ¼
( jeiθa − eiθb j ðtype-IÞ

sinhðπTljθa−θbjÞ
πTl ðtype-IIÞ : ð10Þ

Here θa;b are the angle coordinates of the boundary sites.
This emulates CFTs on a circle at zero and finite temper-
ature. While Eqs. (9) are good approximations on type-II
lattices, especially for the two-point function, the proper

quantitative formula requires to replace θa − θb →
θa − θb þ 2πn in dab with a subsequent sum over n∈Z
to make the functions periodic [67]. This behavior, rem-
iniscent of the method of images, also arises in the BTZ
geometry and is thus expected here [64].
Our main novel findings from the analysis of correlations

are that (1) the scaling dimension Δðm2l2Þ extracted from
the two-point function also captures the scaling of the
three-point function, indicating a consistent CFT [Fig 3(d)],
(2) the parameter k on type-II lattices determines the
temperature consistent with the formula Tl ¼ kP=8π
[Fig. 2(d)], but leaves the CFT data invariant, and
(3) the CFT data Δðm2l2Þ and C3ðm2l2Þ for the CFTs
simulated on both type-I and type-II lattices are identical
[Figs. 3(d) and 3(e)]. The latter finding indicates that they
are the same CFTs, but at zero and finite temperature.
These nontrivial results also solidify the interpretation of
the type-II lattice as a geometry that emulates a black hole.
The holographic relation between Δ and m2l2 is of

the form m2l2 ¼ f½ΔðΔ − 1Þ� with fcontðXÞ ¼ X in the
continuum, while a gradient expansion for the {3,7} lattice
yields

fðXÞ≃Xþh2

4
ðX2þ2XÞþh4

36
ðX3þ10X2þ12XÞ ð11Þ

with h ¼ 0.497 [19,22,67], see Fig. 2(b). The value of h
and form of fðXÞ depend on the fp; qg lattice, with the
universal continuum limit recovered for h → 0. To extract
the three-point coefficient C3 in a manner that reduces
scatter due to the lattice discretization, we construct the
function Fabc ¼ hOaObOci=½hOaObihOaOcihObOci�1=2
that we average over a, b, c to obtain Fabc ≃ C3 [67].
Experimental protocol for electrical circuits—We pro-

pose to realize the holographic toy model in electrical
circuits by implementing the equation of motion

−
X
ν

AμνV̄ν þ m̂2V̄μ þ
u
2
V̄2
μ ¼ 0; ð12Þ

where ϕμ → V̄μ is the normalized local voltage at node zμ.
By applying voltage sources on the boundary, fixed values
V̄a ¼ Ja can be realized. The solution V̄μ parametrically
depends on the Ja chosen. By applying time-dependent
boundary conditions, JaðtÞ, t derivatives conveniently
translate to Ja derivatives below. From the measured or
simulated voltage signal V̄μðtÞ, we compute the circuit
generating function

WcircðtÞ ¼ −SðfV̄μðtÞgÞ; ð13Þ

with action SðfϕμgÞ from Eq. (3). We have Wcirc ≃ lnZ in
the saddle-point approximation, sufficient for the semi-
classical holographic limit studied here.

(a) (b)

(c) (d)

FIG. 2. CFT two-point function. Results are shown for {3,7}
hyperbolic flakes. (a) Representative two-point function in type-I
geometry with bulk mass m2l2 ¼ 0.271. Datasets are computed
from Eq. (7) (blue) and numerical simulation of the electrical
circuit in Eqs. (12)–(14) using a realistic diode (pink). The data
scatter results from binning the discrete lattice coordinates θa.
Fitted power-law formula (9) shown in orange. (b) Fitted con-
formal dimension Δ versus m2l2 > −1=4 (blue squares with fit
error). Because of lattice corrections captured by Eq. (11) (orange),
Δ deviates from the continuum formula m2l2 ¼ ΔðΔ − 1Þ (gray
dashed). (c) Two-point function on the type-II lattice for the same
mass as in a, showing thermal behavior according to Eq. (9).
(d) The fitted type-II temperature T (circles) is approximately
independent of m and described by Tl ¼ kP=8π (lines). Here,
P ≈ 1.845 for {3,7} and k ¼ 4, 6, 8, 10, 12 in the plot.
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To realize the terms in Eq. (12), we use resistors to
generate the linear couplings

P
νð−Aμν þ m̂2δμνÞVν, while

diodes can be used for the nonlinear term uV2
μ. Indeed, the

current through a diode is approximated by the Shockley
equation IðVÞ ¼ ISðeV=VS − 1Þ ≈ IS½V=VS þ ðV=VSÞ2=2�,
which yields the desired V2

μ term after absorbing the linear
part into m̂2Vμ. The concrete circuit parameters are listed in
Supplemental Sec. S8 [67]. On short timescales, dissipative
terms present in any realistic circuit lead to transient
behavior. These effects are neglected here and the corre-
spondence is realized in the steady state, assuming an
instantaneous response to JaðtÞ.
Our protocol to compute two-point functions from

WcircðtÞ is as follows. We apply a drive that linearly ramps
Ja;bðtÞ ¼ Ka;b × ðt − t0Þ, crossing zero at t ¼ t0, while all
other JμðtÞ≡ 0 for μ ≠ a, b. Since all second time
derivatives vanish, we have

d2Wcirc

dt2

����
t¼t0

¼
X
μ;ν

J̇μJ̇ν
∂
2Wcirc

∂Jμ∂Jν

����
J¼0

¼K2
ahO2

aiþ2KaKbhOaObiþK2
bhO2

bi: ð14Þ

By choosing three linearly independent ramps in a series
of measurements, e.g., ðKa;KbÞ ¼ ð1; 0Þ; ð0; 1Þ; ð1; 1Þ, this

set of three linear equations can be solved for hOaObi.
Similarly, to measure n-point functions, we ramp n
boundary sites Ja1ðtÞ;…; JanðtÞ linearly. By using ten
linearly independent ramps, we obtain hOaObOci from
d3Wcirc=dt3jt¼t0 .
In Fig. 2(a) we present results for the so-obtained

two-point function using an LTspice simulation of an
electrical circuit with a realistic Schottky diode (model
RBE1VAM20A). In Figs. 3(b) and 3(c) we present the
three-point function for the same parameters from a
Mathematica simulation of Eqs. (12)–(14). Since the signals
in actual electrical circuits are known to be close to such
numerical simulations [55–57], this serves as a proof of
principle that our protocol is experimentally feasible.
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