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I. HYPERBOLIC TIGHT-BINDING MODELS

Generically, a tight-binding model is defined in real space by orbitals at certain positions with nontrivial on-site symmetry
group, so-called Wyckoff positions, and couplings between them. Thus, the first step in describing hyperbolic tight-binding
models is to find and enumerate these Wyckoff positions. In Section I A we describe how to label the Wyckoff positions based
on the triangle group, first in the infinite lattice, then on the lattice subdivided into unit cells, and finally on the lattice subdivided
into supercells, which themselves are subdivided into primitive cells. Next, in Section I B, we discuss generic forms of hopping
Hamiltonians defined on infinite lattices and on finite clusters with periodic boundary conditions (PBC). Finally, in Section I C,
we show how to block-diagonalize the Hamiltonian in terms of blocks of generalized Bloch Hamiltonians.
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A. Algebraic labeling of Wyckoff positions and unit cells

To define tight-binding models in real space, we first need to develop a systematic method for labeling the potential positions
of orbitals, i.e., the lattice sites. These sites are typically located at high-symmetry positions, i.e., points with nontrivial on-site
symmetry group, and depend on the underlying space group (the triangle group). Here, we limit our attention to the maximally
symmetric positions, i.e., those whose site-symmetry groups are not a proper subgroup of any other site-symmetry group [1]
(which for the regular {𝑝, 𝑞} tessellations correspond to centers of rotation symmetries), arriving at Eq. (S5).

Next, we discuss how to subdivide the infinite lattice into unit cells and identify a set of representatives of all high-symmetry
positions contained within the unit cell; these are the (maximally symmetric) Wyckoff positions, cf. Eq. (S9). That allows us
to relabel all sites in the infinite lattice in terms of the unit cell they are contained in and the corresponding Wyckoff position,
cf. Eq. (S17).

Finally, we add two additional levels of subdivision: instead of covering the lattice directly with copies of a primitive cell,
we subdivide it into large super-supercells composed of supercells, which themselves are composed of primitive cells. The
motivation for doing this is that we may wish to consider large but finite PBC clusters instead of the infinite hyperbolic lattice.
In this language, a finite PBC cluster can be described as a single super-supercell. In general, the primitive cells covering the
infinite lattice are labeled according to Eq. (S20) in terms of which super-supercell, which supercell within the super-supercell,
and which primitive cell within the supercell they lie in.

1. Tiling by Schwarz triangles

Recall from the main text that the triangle group

Δ(𝑟, 𝑞, 𝑝) =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, (𝑎𝑏)𝑟 , (𝑏𝑐)𝑞 , (𝑐𝑎) 𝑝
〉

(S1)

acts as a space group and tiles the plane by Schwarz triangles, cf. Fig. 2. By defining the right group action of Δ on the abstract
set 𝑆 of all Schwarz triangles, 𝑆 can be viewed as generated by acting with all elements of Δ on one particular element of 𝑆, the
fundamental Schwarz triangle (FST) 𝑠 𝑓 : 𝑆 = 𝑠 𝑓 · Δ, cf. Fig. 2b.

The vertices of the Schwarz triangles in the tiling form a hyperbolic triangular lattice where each site has a nontrivial on-site
symmetry group generated by the reflection symmetries with mirror lines passing through the vertex, cf. Fig. 2b. Here, we find
it more convenient to work directly with the proper triangle group

Δ+ (𝑟, 𝑞, 𝑝) = ⟨𝑥, 𝑦, 𝑧 | 𝑥𝑦𝑧, 𝑥𝑟 , 𝑦𝑞 , 𝑧𝑝⟩ , (S2)

with the embedding homomorphismΔ+ → Δ defined by 𝑥 ↦→ 𝑎𝑏, 𝑦 ↦→ 𝑏𝑐, 𝑧 ↦→ 𝑐𝑎. The proper subgroup of the above-mentioned
on-site symmetry group of a given vertex is then generated by the rotation around that vertex, cf. Fig. 2b. The set𝑉 of all vertices
can be divided into three subsets 𝑉𝑧 , 𝑉𝑦 , 𝑉𝑥 according to which vertex of the FST they originate from under action of Δ. Thus,
we have 𝑉 = 𝑉𝑧 ∪𝑉𝑦 ∪𝑉𝑥 . Below we discuss 𝑉𝑧 , but the discussion for the other two sets is analogous.

The on-site symmetry group of a vertex in 𝑉𝑧 is

Δ+𝑧 = ⟨𝑧 | 𝑧𝑝⟩ (S3)

and is exactly the stabilizer of that vertex if we define a right action of Δ+ on the abstract set 𝑉𝑧 . By the orbit-stabilizer theorem,
there exists a bĳection between the orbit 𝑣𝑧 · Δ+ of some 𝑣𝑧 ∈ 𝑉𝑧 (assumed to be a vertex of the FST) and the quotient Δ+/Δ+𝑧 , or
equivalently between 𝑉𝑧 and the right transversal of Δ+𝑧 in Δ+

𝑉𝑧 � 𝑇Δ+ (Δ+𝑧 ). (S4)

Thus, the vertices are labelled by (𝑤, [𝑡]𝑤) for 𝑤 ∈ {𝑥, 𝑦, 𝑧} and [𝑡]𝑤 ∈ Δ+/Δ+𝑤 where a set of distinct cosets [𝑡] is given by a
choice of representatives, i.e., the right transversal 𝑇Δ+ (Δ+𝑤) mentioned above:

𝑉 �
{
(𝑤, [𝑡]𝑤) : 𝑤 ∈ {𝑥, 𝑦, 𝑧}, 𝑡 ∈ 𝑇Δ+ (Δ+𝑤)

}
. (S5)

Note that for the orbit-stabilizer theorem it is important to pair right action with right cosets (and right transversal). Alternatively,
we can work with the full groups Δ and Δ𝑧 to arrive at the same conclusion: 𝑉𝑧 � 𝑇Δ (Δ𝑧), because Δ is the semidirect product
of Δ+ with Z2, the group generated by one of the reflections.
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2. Bravais lattice and unit cells

The lattice formed by the vertices of the Schwarz triangles does not generally form a Bravais lattice. To obtain the Bravais
lattice corresponding to a triangle group Δ(𝑟, 𝑞, 𝑝), a translation group Γ ◁ Δ+ needs to be identified as discussed in the main
text. The translation group then defines the subdivision of the infinite lattice into copies of the unit cell via the quotient group
Δ/Γ (which is a group because Γ ◁ Δ). Formally, we consider the decomposition of Δ into (disjoint) right cosets of Γ (which are
equal to the left cosets, because Γ ◁ Δ) using the transversal 𝑇Δ (Γ):

Δ =
⋃

𝑔 𝑗 ∈𝑇Δ (Γ)
Γ𝑔 𝑗 =

⋃
𝑔 𝑗 ∈𝑇Δ (Γ)

𝑔 𝑗Γ =
⋃
𝛾∈Γ

𝑇Δ (Γ)𝛾, (S6)

such that the set 𝑆 of all Schwarz triangles is decomposed as

𝑆 = 𝑠 𝑓 · Δ =
⋃
𝛾∈Γ

𝑠 𝑓 · (𝑇Δ (Γ)𝛾) =
⋃
𝛾∈Γ

(
𝑠 𝑓 · 𝑇Δ (Γ)

)
· 𝛾, (S7)

i.e., 𝑆 is divided into copies of 𝐶 = 𝑠 𝑓 · 𝑇Δ (Γ) under action of the translation group:

𝑆 =
⋃
𝛾∈Γ

𝐶 · 𝛾 = 𝐶 · Γ, (S8)

where 𝐶 is interpreted as the set of Schwarz triangles in the unit cell. Above, we have emphasized the fact that 𝑇Δ (Γ) is a set
of chosen representatives of the cosets in Δ/Γ by labeling elements by 𝑔 𝑗 with the index 𝑗 enumerating the representatives of
different cosets. The choice of 𝑇Δ (Γ) determines the unit cell in real space (relative to the FST), e.g., whether it is a connected
region and whether it is symmetric under point-group operations. The software package [2] accompanying our work includes
algorithms that choose 𝑇Δ (Γ) such that 𝐶 is connected and symmetric, given as input Δ+/Γ and 𝑤 ∈ {𝑥, 𝑦, 𝑧} specifying the
center and therefore symmetry of the unit cell.

By the isomorphism theorem, the quotient Δ/Γ is isomorphic to the group 𝐺, which we interpret as the point group, since it
maps the unit cell 𝐶 to itself. Using this isomorphism, we can define the induced right action from 𝐺 on 𝐶, such that 𝐶 = 𝑠 𝑓 ·𝐺.
To label vertices, working with the proper subgroups is again more convenient (but not necessary). Note that the semidirect
product structure of Δ implies𝐺+ � Δ+/Γ. Further, for any 𝑤 ∈ {𝑥, 𝑦, 𝑧}, Δ+𝑤, by definition in terms of a single rotation generator,
does not have any torsion-free elements, such that the stabilizer 𝐺+𝑤 of 𝑣𝑤 (modulo translations in Γ) under the right action of 𝐺+
is isomorphic to the full stabilizer: 𝐺+𝑤 � Δ+𝑤. This now allows us to label the vertices in the unit cell, i.e., the Wyckoff positions:
𝑉𝐶 = 𝑉𝐶𝑧 ∪𝑉𝐶𝑦 ∪𝑉𝐶𝑥 with 𝑉𝐶𝑤 � 𝑇𝐺+ (𝐺+𝑤), i.e.,

𝑉𝐶 �
{
(𝑤, [𝛿]𝑤) : 𝑤 ∈ {𝑥, 𝑦, 𝑧}, 𝛿 ∈ 𝑇𝐺+ (𝐺+𝑤)

}
, (S9)

where [𝛿]𝑤 ∈ 𝐺+/𝐺+𝑤. Note that the subscript again indicates the quotient group in which the coset lies. We now want to write
all vertices, i.e., the infinite set𝑉 , in terms of translated Wyckoff positions, i.e., in terms of the finite set𝑉𝐶 and translations in Γ.

By the coset decomposition

Δ+ =
⋃

𝑔 𝑗 ∈𝑇Δ+ (Γ)
𝑔 𝑗Γ, (S10)

any 𝑡 ∈ Δ+ can be written as

𝑡 = 𝑔 𝑗𝛾
′, (S11)

for unique 𝑔 𝑗 ∈ 𝑇Δ+ (Γ) and 𝛾′ ∈ Γ. Using the quotient group isomorphism 𝑖 : Δ+/Γ→ 𝐺+, the image 𝑖( [𝑔 𝑗 ]) of the unique coset
[𝑔 𝑗 ] ∈ Δ+/Γ associated with 𝑔 𝑗 ∈ 𝑇Δ+ (Γ) can be rewritten using the right coset decomposition (for any choice of 𝑤 ∈ {𝑥, 𝑦, 𝑧}):

𝐺+ =
⋃

𝛿𝑘 ∈𝑇𝐺+ (𝐺+𝑤 )
𝐺+𝑤𝛿𝑘 , (S12)

i.e.,

𝑖( [𝑔 𝑗 ]) = 𝑖( [𝑤𝑛])𝛿𝑘 (S13)

with unique 𝑛 ∈ {0, 1, . . . , |𝐺+𝑤 | − 1} and 𝛿𝑘 ∈ 𝑇𝐺+ (𝐺+𝑤). Note that 𝑛 = 𝑛( 𝑗) and 𝑘 = 𝑘 ( 𝑗), i.e., they implicitly depend on
the specific choice of 𝑗 , but we suppress this dependence for better readability. Applying the inverse of 𝑖 and recognizing that
𝑖−1 (𝛿𝑘) = [𝑔] for a unique 𝑔 ∈ 𝑇Δ+ (Γ), which we denote by 𝑔𝑢𝑤 to emphasize that 𝑖( [𝑔𝑢𝑤]) ∈ 𝑇𝐺+ (𝐺+𝑤), results in

[𝑔 𝑗 ] = [𝑤𝑛] [𝑔𝑢𝑤], (S14)
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which in turn implies (due to Γ ⊴ Δ+)

𝑔 𝑗 = 𝑤
𝑛𝑔𝑢𝑤𝛾

′′, (S15)

for a unique 𝛾′′ ∈ Γ. Thus, we have shown that for any choice 𝑤 ∈ {𝑥, 𝑦, 𝑧}, an arbitrary 𝑡 ∈ Δ+ can be written as

𝑡 = 𝑤𝑛𝑔𝑢𝑤𝛾 (S16)

for a unique 𝑛 ∈ {0, 1, . . . , |𝐺+𝑤 | − 1}, 𝑔𝑢𝑤 ∈ 𝑇Δ+ (Γ) with 𝑖( [𝑔𝑢𝑤]) ∈ 𝑇𝐺+ (𝐺+𝑤), and 𝛾 ∈ Γ. Note that the order of the elements
in Eq. (S16) is important (and is influenced by the fact that we use right action). The rotation 𝑤𝑛 is to the very left, as required
by the orbit-stabilizer theorem; when generating the set 𝑉 by right action from the three vertices 𝑣𝑤, 𝑤 ∈ {𝑥, 𝑦, 𝑧}, 𝑤𝑛 leaves 𝑣𝑤
invariant due to being in its stabilizer Δ+𝑤. The order of 𝑔𝑢𝑤 and 𝛾, on the other hand, is physically motivated (mathematically,
the opposite order would be equally valid, since Γ ◁ Δ+ implies that 𝑔𝑢𝑤𝛾 could be written with different translation to the left
of 𝑔𝑢𝑤 instead): 𝑔𝑢𝑤 specifies the position of the vertex in each unit cell and then the whole unit cell containing all vertices is
translated by 𝛾.

This allows us to label all Wyckoff positions in the unit cell by 𝑢 = (𝑤, [𝑔𝑢𝑤]𝑤) where [𝑔𝑢𝑤]𝑤 ∈ 𝑇𝐺+ (𝐺+𝑤). Correspondingly,
Wyckoff positions in the infinite lattice can be labelled by (𝑢, 𝛾), where 𝛾 ∈ Γ labels the unit cell, i.e.,

𝑉 �
⋃
𝛾∈Γ

{
(𝑢, 𝛾) : 𝑢 = (𝑤, [𝑔𝑢𝑤]𝑤), 𝑤 ∈ {𝑥, 𝑦, 𝑧}, 𝑔𝑢𝑤 ∈ 𝑇Δ+ (Γ), 𝑖( [𝑔𝑢𝑤]) ∈ 𝑇𝐺+ (𝐺+𝑤)

}
. (S17)

More practically, determining the set 𝑉 of distinct vertices requires to first choose 𝑇Δ+ (Γ) ⊂ Δ+ and then find the subset of
elements 𝑔𝑢𝑤 satisfying 𝑖( [𝑔𝑢𝑤]) ∈ 𝑇𝐺+ (𝐺+𝑤).

The software package [2] accompanying our work includes algorithms that, given 𝐺+ and 𝑤 as input, construct (1) a list of
Wyckoff positions in the unit cell labelled by 𝑢 = (𝑤, 𝑢𝑤), (2) the compactified nearest-neighbor graph formed by them, including
corresponding translations 𝛾 for edges crossing the unit cell boundary, and (3) a minimal list of translation generators chosen
from those to ensure that they are translations to adjacent unit cells.

Part of the output of those algorithms for two quotient groups of Δ(2, 8, 8) is illustrated in Fig. 2a. The set 𝑆 of Schwarz
triangles is shown as gray/white triangles, the subset 𝐶 (1) corresponding to the primitive cell is indicated by the blue polygon
and the subset 𝐶 (2) corresponding to the first supercell by the orange polygon. The compactified nearest-neighbor graphs
are not shown explicitly but can be inferred: edges go along sides of the Schwarz triangles and for a given cell (primitive or
supercell) edges on the cell boundary are identified according to the translations that relate them. These translations can be either
generators 𝛾𝑖 of the corresponding translation group (indicated by the corresponding index 𝑖), their inverses 𝛾−1

𝑖
(indicated by

𝑖), or composite translations and their inverses. Specifically for the 2-supercell in Fig. 2a there are two pairs of boundary edges
related by the composite translations: 𝛼 = 𝛾5

−1𝛾3
−1𝛾1

−1 and 𝛽 = 𝛾6
−1𝛾4

−1𝛾2
−1.

3. Supercells

Above, we have introduced labels for Wyckoff positions and unit cells. Next, we consider supercells made up of primitive
cells. We assume a normal sequence of translation groups Γ (𝑚) ◁ Δ+, 𝑚 ≥ 1, satisfying Γ (𝑚+1) ◁ Γ (𝑚) , as discussed in the main
text. The primitive cells 𝐶 (1) within the infinite lattice are labeled by 𝛾 (1) ∈ Γ (1) . Because Γ (𝑚) is a normal subgroup of Γ (1) ,
we can once more consider the coset decomposition

Γ (1) =
⋃

[
(1)
𝑖
∈𝑇

Γ (1) (Γ (𝑚) )

[
(1)
𝑖

Γ (𝑚) , (S18)

which implies that any 𝛾 (1) ∈ Γ (1) can be decomposed into unique [ (1)
𝑖
∈ 𝑇Γ (1) (Γ (𝑚) ) and 𝛾 (𝑚) ∈ Γ (𝑚) :

𝛾 (1) = [ (1)
𝑖
𝛾 (𝑚) , (S19)

where [ (1)
𝑖
∈ 𝑇Γ (1) (Γ (𝑚) ) now labels the primitive cells 𝐶 (1) within a supercell 𝐶 (𝑚) and 𝛾 (𝑚) ∈ Γ (𝑚) the supercells 𝐶 (𝑚) in the

infinite lattice. Let us again comment on the order of group elements. The same argument as for the position of 𝛾 in Eq. (S16)
applies here: [ (1)

𝑖
, which describes the internal structure of the supercell, appears to the left of the translation 𝛾 (𝑚) connecting

different copies of the supercell. With that order, if two primitive cells in some supercell are related by a translation generator
[
(1)
𝑖

, the corresponding copies of the primitive cells in the translated supercell are still related by [ (1)
𝑖

.
We now consider a larger super-supercell 𝐶 (𝑛) given by Γ (𝑛) with 𝑛 > 𝑚. Such a super-supercell consists of copies of the

smaller supercell 𝐶 (𝑚) , which in turn consists of copies of the primitive cell 𝐶 (1) . Using the fact that for 𝛾 (𝑚) ∈ Γ (𝑚) there exist
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unique [ (𝑚)
𝑖′ ∈ 𝑇Γ (𝑚) (Γ (𝑛) ) and 𝛾 (𝑛) ∈ Γ (𝑛) such that 𝛾 (𝑚) = [ (𝑚)

𝑖′ 𝛾 (𝑛) , we find that any 𝛾 (1) ∈ Γ (1) can be decomposed into
unique [ (1)

𝑖
∈ 𝑇Γ (1) (Γ (𝑚) ), [

(𝑚)
𝑖′ ∈ 𝑇Γ (𝑚) (Γ (𝑛) ) and 𝛾 (𝑛) ∈ Γ (𝑛) :

𝛾 (1) = [ (1)
𝑖
[
(𝑚)
𝑖′ 𝛾 (𝑛) . (S20)

We consistently label elements of Γ (𝑚) with the corresponding superscript, e.g., 𝛾 (𝑚) ∈ Γ (𝑚) and [ (𝑚)
𝑖′ ∈ Γ (𝑚) , where the

subscript indicates that [ (𝑚)
𝑖′ is an element of a transversal, in this case of 𝑇Γ (𝑚) (Γ (𝑛) ). Note that Γ (𝑚) ⊂ Γ (1) , such that all

elements in Eq. (S20) are elements of Γ (1) .

B. Hopping Hamiltonian

In this subsection, we develop the formalism for defining hopping Hamiltonians on both infinite hyperbolic lattices as well as
PBC clusters, based on the algebraic description of the lattice introduced in the previous subsection. We start by subdividing the
infinite lattice into primitive cells, each of which contains orbitals at certain Wyckoff positions. This utilizes the decomposition
given in Eqs. (S16) and (S17) and results in Eq. (S21). Next, we further subdivide the lattice into supercells 𝐶 (𝑚) consisting
of several primitive cells. Based on the decomposition in Eq. (S19), this results in Eq. (S22). Finally, we add one more
layer of subdivision: larger super-supercells 𝐶 (𝑛) consisting themselves of several copies of 𝐶 (𝑚) . This last step reflects the
decomposition in Eq. (S20) and results in Eq. (S24). Instead of working on the infinite lattice, one can consider finite PBC
clusters: the PBC identify each site outside of the cluster with a particular site inside it. This allows us to immediately write down
the Hamiltonians on PBC clusters formed by a single supercell 𝐶 (𝑚) or a single super-supercell 𝐶 (𝑛) , in Eqs. (S23) and (S25),
respectively.

A generic hopping Hamiltonian defined on the primitive cell 𝐶 (1) with translation group Γ (1) and hopping amplitude ℎ𝑢𝑣 (𝛾)
for hopping from orbital 𝑣 in the unit cell to orbital 𝑢 in the unit cell translated by 𝛾 is given by

H =
∑︁

𝛾 (1) ,�̆� (1) ∈Γ (1)

∑︁
𝑢,𝑣

ℎ𝑢𝑣
(
𝛾 (1) �̆� (1)

−1
)
𝑐𝑢
𝛾 (1)
†
𝑐𝑣
�̆� (1)
, (S21)

where 𝑐𝑢𝛾† is the creation operator for the orbital 𝑢 in the unit cell 𝛾. Note that the more generic amplitude ℎ𝑢𝑣 (𝛾 (1) , �̆� (1) )
simplifies to ℎ𝑢𝑣 (𝛾 (1) �̆� (1) −1) due to translation invariance.

If we further subdivide the infinite lattice into supercells 𝐶 (𝑚) with translation group Γ (𝑚) , then the same Hamiltonian can be
rewritten as

H =
∑︁

𝛾 (𝑚) ,�̆� (𝑚) ∈Γ (𝑚)

∑︁
[
(1)
𝑖
,[
(1)
𝑗
∈𝑇

Γ (1) (Γ (𝑚) )

∑︁
𝑢,𝑣

ℎ𝑢𝑣
(
[
(1)
𝑖
𝛾 (𝑚) �̆� (𝑚)

−1
[
(1)
𝑗

−1)
𝑐𝑢
[
(1)
𝑖
𝛾 (𝑚)
†
𝑐𝑣
[
(1)
𝑗
�̆� (𝑚)

, (S22)

where we used the unique decomposition given in Eq. (S19). With simplified notation 𝛾 (𝑚) ↦→ �̃�, �̆� (𝑚) ↦→ �̃�′, and [ (1)
𝑖
↦→ [𝑖 ,

this is exactly the Hamiltonian appearing in Eq. (4). Restricting to a single copy of the supercell implies that sites related by
some 𝛾 (𝑚) ∈ Γ (𝑚) are identified. Formally, this is implemented by specifying the primitive cell not by elements of Γ (1) , but by
cosets [[ (1)

𝑖
] (1,𝑚) ∈ Γ (1)/Γ (𝑚) , where [ (1)

𝑖
∈ 𝑇Γ (1) (Γ (𝑚) ). Here, we have introduced the subscript (1, 𝑚) to indicate the type of

coset. This results in the Hamiltonian for a finite PBC cluster:

H𝑚-PBC =
∑︁

𝛾 (𝑚) ∈Γ (𝑚)

∑︁
[
(1)
𝑖
,[
(1)
𝑗
∈𝑇

Γ (1) (Γ (𝑚) )

∑︁
𝑢,𝑣

ℎ𝑢𝑣
(
[
(1)
𝑖
𝛾 (𝑚)[ (1)

𝑗

−1)
𝑐𝑢[
[
(1)
𝑖

]
(1,𝑚)

†
𝑐𝑣[
[
(1)
𝑗

]
(1,𝑚)

, (S23)

where we have set �̆� (𝑚) = 1, since we are now focusing on a single copy of the supercell 𝐶 (𝑚) ; however, we keep the summation
over 𝛾 (𝑚) ∈ Γ (𝑚) due to the possibility of long-range hopping processes inH that exceed the size of a single supercell.

Next, we introduce another level of subdivision: an even larger super-supercell 𝐶 (𝑛) with 𝑛 > 𝑚 consisting of copies of the
supercell 𝐶 (𝑚) . Using the unique decomposition given in Eq. (S20), we can rewrite Eq. (S22) as

H =
∑︁

𝛾 (𝑛) ,�̆� (𝑛) ∈Γ (𝑛)

∑︁
[
(𝑚)
𝑖′ ,[

(𝑚)
𝑗′ ∈𝑇Γ (𝑚) (Γ

(𝑛) )

∑︁
[
(1)
𝑖
,[
(1)
𝑗
∈𝑇

Γ (1) (Γ (𝑚) )

∑︁
𝑢,𝑣

ℎ𝑢𝑣
(
[
(1)
𝑖
[
(𝑚)
𝑖′ 𝛾 (𝑛) �̆� (𝑛)

−1
[
(𝑚)
𝑗′
−1
[
(1)
𝑗

−1)
𝑐𝑢
[
(1)
𝑖
[
(𝑚)
𝑖′ 𝛾 (𝑛)

†
𝑐𝑣
[
(1)
𝑗
[
(𝑚)
𝑗′ �̆� (𝑛)

,

(S24)
which once more can be restricted to a PBC cluster, in this case to 𝐶 (𝑛) :

H𝑛-PBC =
∑︁

𝛾 (𝑛) ∈Γ (𝑛)

∑︁
[
(𝑚)
𝑖′ ,[

(𝑚)
𝑗′ ∈𝑇Γ (𝑚) (Γ

(𝑛) )

∑︁
[
(1)
𝑖
,[
(1)
𝑗
∈𝑇

Γ (1) (Γ (𝑚) )

∑︁
𝑢,𝑣

ℎ𝑢𝑣
(
[
(1)
𝑖
[
(𝑚)
𝑖′ 𝛾 (𝑛)[ (𝑚)

𝑗′
−1
[
(1)
𝑗

−1)
𝑐𝑢[
[
(1)
𝑖
[
(𝑚)
𝑖′

]
(1,𝑛)

†
𝑐𝑣[
[
(1)
𝑗
[
(𝑚)
𝑗′

]
(1,𝑛)

,

(S25)
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where primitive cells are now labeled by cosets [[ (1)
𝑗
[
(𝑚)
𝑗′ ] (1,𝑛) ∈ Γ (1)/Γ (𝑛) [note the difference with Eq. (S23)].

For simplicity, we temporarily suppress the internal structure of𝐶 (𝑚) in terms of copies of𝐶 (1) , introducing new orbital labels
` = (𝑢, [ (1)

𝑖
), a = (𝑣, [ (1)

𝑗
) and creation/annihilation operators

𝑐
`[
[
(𝑚)
𝑖′

]
(𝑚,𝑛)

= 𝑐𝑢[
[
(1)
𝑖
[
(𝑚)
𝑖′

]
(1,𝑛)

and 𝑐a[
[
(𝑚)
𝑗′

]
(𝑚,𝑛)

= 𝑐𝑣[
[
(1)
𝑗
[
(𝑚)
𝑗′

]
(1,𝑛)

, (S26)

where [[ (𝑚)
𝑖′ ] (𝑚,𝑛) ∈ Γ (𝑚)/Γ (𝑛) now labels the copies of 𝐶 (𝑚) , rather than copies of 𝐶 (1) as did [[ (1)

𝑖
[
(𝑚)
𝑖′ ] (1,𝑛) , and ` takes care

of copies of 𝐶 (1) within 𝐶 (𝑚) , such that still all copies of 𝐶 (1) are captured. Then,

H𝑛-PBC =
∑︁

𝛾 (𝑛) ∈Γ (𝑛)

∑︁
[
(𝑚)
𝑖′ ,[

(𝑚)
𝑗′ ∈𝑇Γ (𝑚) (Γ

(𝑛) )

∑̀︁
,a

h`a
(
[
(𝑚)
𝑖′ 𝛾 (𝑛)[ (𝑚)

𝑗′
−1)

𝑐
`[
[
(𝑚)
𝑖′

]
(𝑚,𝑛)

†
𝑐a[
[
(𝑚)
𝑗′

]
(𝑚,𝑛)

, (S27)

where

h`a
(
[
(𝑚)
𝑖′ 𝛾 (𝑛)[ (𝑚)

𝑗′
−1)

= ℎ𝑢𝑣
(
[
(1)
𝑖
[
(𝑚)
𝑖′ 𝛾 (𝑛)[ (𝑚)

𝑗′
−1
[
(1)
𝑗

−1)
(S28)

forms the hopping matrix h defined on 𝐶 (𝑚) .

C. Bloch Hamiltonian

In this subsection, we derive the Bloch Hamiltonian corresponding to the most general Γ (1) -translation-invariant hopping
Hamiltonian. As discussed in the main text, the Bloch Hamiltonian depends on the choice of unit cell, i.e., the choice of
translation subgroup that is considered. We assume a subdivision of the infinite lattice into supercells 𝐶 (𝑚) and ignore the
additional internal translation-invariant structure of 𝐶 (𝑚) in terms of primitive cells, i.e., only Γ (𝑚) is utilized. However, instead
of doing that for the Hamiltonian defined on the infinite lattice [Eq. (S22)], we assume a finite but large PBC cluster made up
of many copies of 𝐶 (𝑚) . More precisely, we choose this finite PBC cluster to be a larger super-supercell 𝐶 (𝑛) , i.e., we consider
Eq. (S27). This reduces the full translation group Γ (𝑚) to the quotient group Γ (𝑚)/Γ (𝑛) , such that we avoid dealing with the
former infinite group. Below, we first show that the Hamiltonian given in Eq. (S27) can be block-diagonalized into blocks of
Bloch Hamiltonians [Eqs. (S38) and (S39)].

Only at the end do we take the limit 𝑛→∞, thereby recovering the infinite lattice [3]. This corresponds to taking the limit of
an infinitely large super-supercell 𝐶 (𝑛) . In the main text, we have discussed the reciprocal space of the infinite lattice, which is
the continuous space of irreducible representations (IRs) of the infinite group Γ (𝑚) . Alternatively, we could consider the discrete
reciprocal space of a finite PBC cluster, i.e., the super-supercell 𝐶 (𝑛) . This reciprocal space is spanned by the finitely many IRs
of the finite group Γ (𝑚)/Γ (𝑛) [4]. By the third isomorphism theorem [5], the sequence of normal subgroups Γ (𝑚+1) ◁ Γ (𝑚)

implies that, for fixed 𝑛, the quotients Γ (𝑚)/Γ (𝑛) also form a sequence of normal subgroups:

Γ (𝑚+1)/Γ (𝑛) ◁ Γ (𝑚)/Γ (𝑛) . (S29)

Therefore, the subduction and induction of representations apply to that space as well. We anticipate that this provides an
approximation of the thermodynamic limit [3] and converges to the full reciprocal space for 𝑛→∞.

Starting from Eq. (S27) we now derive the corresponding Bloch Hamiltonian implementing the translation symmetry due to
the finite translation group Γ (𝑚)/Γ (𝑛) . Simplifying the notation, namely writing �̃� for 𝛾 (𝑛) and dropping the super- and subscripts
of [ (𝑚)

𝑖
and of the cosets [·] (𝑚,𝑛) , respectively, the Hamiltonian on the finite 𝐶 (𝑛) PBC cluster reads

H𝑛-PBC =
∑︁
�̃�∈Γ (𝑛)

∑︁
[𝑖 ,[ 𝑗 ∈𝑇Γ (𝑚) (Γ (𝑛) )

∑̀︁
,a

h`a
(
[𝑖 �̃�[

−1
𝑗

)
𝑐
`

[[𝑖 ]
†
𝑐a[[ 𝑗] . (S30)

We recognize that [𝑖 �̃� = 𝛾′ ∈ Γ (𝑚) and by the coset decomposition of Γ (𝑚)/Γ (𝑛) the sums over �̃� ∈ Γ (𝑛) and [𝑖 ∈ 𝑇Γ (𝑚) (Γ (𝑛) )
can be replaced by a sum over 𝛾′ ∈ Γ (𝑚) :

H𝑛-PBC =
∑︁

𝛾′∈Γ (𝑚)

∑︁
[ 𝑗 ∈𝑇Γ (𝑚) (Γ (𝑛) )

∑̀︁
,a

h`a
(
𝛾′[−1

𝑗

)
𝑐
`

[𝛾′ ]
†
𝑐a[[ 𝑗] , (S31)

where in the subscript of the creation operator we used that [𝑖 and 𝛾′ = [𝑖 �̃� are in the same coset of Γ (𝑚)/Γ (𝑛) . Next, for a given
[ 𝑗 ∈ 𝑇Γ (𝑚) (Γ (𝑛) ), 𝛾′ can be uniquely written as 𝛾[ 𝑗 with 𝛾 = 𝛾′[−1

𝑗
∈ Γ (𝑚) , allowing us to introduce the sum over 𝛾 ∈ Γ (𝑚)



7

instead:

H𝑛-PBC =
∑︁

[ 𝑗 ∈𝑇Γ (1) (Γ (𝑚) )

∑︁
𝛾∈Γ (𝑚)

∑̀︁
,a

h`a (𝛾) 𝑐`[𝛾[ 𝑗]
†
𝑐a[[ 𝑗] . (S32)

According to Eqs. (25-26) in Ref. 4,

𝑐
`

[𝛾[ 𝑗 ]
†

=
∑︁
𝑖

𝑐
`

[[𝑖 ]
† U𝑖 𝑗 ( [𝛾]) , (S33)

where the matrices

U𝑖 𝑗 ( [𝛾]) = 𝛿[[𝑖 ], [𝛾[ 𝑗 ] (S34)

form the so-called regular representation of Γ (𝑚)/Γ (𝑛) (note that in contrast to Ref. 4, we are using right cosets). The regular
representation can be decomposed into a direct sum of all IRs, each appearing with multiplicity equal to their dimension 𝑑_ [4],
i.e., there exists a unitary transformation 𝑃 such that

𝑃U ([𝛾]) 𝑃−1 =

N⊕
_=1

𝑑_𝐷
(_) ( [𝛾]) , (S35)

where N is the number of conjugacy classes of Γ (𝑚)/Γ (𝑛) .
The above implies thatH𝑛-PBC can be written in terms of those blocks:

H𝑛-PBC =
∑︁

𝛾∈Γ (𝑚)

∑︁
𝑖, 𝑗

∑̀︁
,a

h`a (𝛾) 𝑐`[[𝑖 ]
† U𝑖 𝑗 ( [𝛾]) 𝑐a[[ 𝑗] (S36)

=
∑︁
𝑘,𝑙

∑̀︁
,a

(∑︁
𝑖

𝑃𝑘𝑖𝑐
`

[[𝑖 ]

)† ∑︁
𝛾∈Γ (𝑚)

h`a (𝛾)
( N⊕
_=1

𝑑_𝐷
(_) ( [𝛾])

)
𝑘𝑙

∑︁
𝑗

𝑃𝑙 𝑗𝑐
a

[[ 𝑗] (S37)

=
∑︁
𝑘,𝑙

∑̀︁
,a

(∑︁
𝑖

𝑃𝑘𝑖𝑐
`

[[𝑖 ]

)† ©«
N⊕
_=1

𝑑_

∑︁
𝛾∈Γ (𝑚)

h (𝛾) ⊗ 𝐷 (_) ( [𝛾])ª®¬
`a

𝑘𝑙

∑︁
𝑗

𝑃𝑙 𝑗𝑐
a

[[ 𝑗] , (S38)

where we recognize the Bloch Hamiltonian

𝐻 (𝐷) =
∑︁

𝛾∈Γ (𝑚)
h(𝛾) ⊗ 𝐷 ( [𝛾]) (S39)

with the hopping matrix h(𝛾) on the supercell 𝐶 (𝑚) having components h`a (𝛾).
Recovering the subdivision into primitive cells using Eq. (S26), we have

H𝑛-PBC =
∑︁
𝑘,𝑙

∑︁
𝑖, 𝑗

∑︁
𝑢,𝑣

𝑐𝑢
𝑖,𝑘
†

∑︁
𝛾 (𝑚) ∈Γ (𝑚)

ℎ𝑢𝑣
(
[
(1)
𝑖
𝛾 (𝑚)[ (1)

𝑗

−1)︸                     ︷︷                     ︸
=:h𝑢𝑣

𝑖 𝑗 (𝛾 (𝑚) )

( N⊕
_=1

𝑑_𝐷
(_)

( [
𝛾 (𝑚)

]
(𝑚,𝑛)

))
𝑘𝑙

𝑐𝑣𝑗,𝑙 (S40)

=
∑︁
𝑘,𝑙

∑︁
𝑖, 𝑗

∑︁
𝑢,𝑣

𝑐𝑢
𝑖,𝑘
†

( N⊕
_=1

𝑑_𝐻

(
𝐷 (_)

))𝑢𝑣
𝑖 𝑗𝑘𝑙

𝑐𝑣𝑗,𝑙 (S41)

with

𝑐𝑢𝑖,𝑘 =
∑︁
𝑖′
𝑃𝑘𝑖′𝑐

𝑢[
[
(1)
𝑖
[
(𝑚)
𝑖′

]
(1,𝑛)

, (S42)

and the Bloch Hamiltonian 𝐻 (𝐷) with matrix elements

𝐻𝑢𝑣
𝑖 𝑗𝑘 (_) 𝑙 (_)

(
𝐷 (_)

)
=

∑︁
𝛾 (𝑚) ∈Γ (𝑚)

h𝑢𝑣𝑖 𝑗
(
𝛾 (𝑚)

)
𝐷
(_)
𝑘 (_) 𝑙 (_)

( [
𝛾 (𝑚)

]
(𝑚,𝑛)

)
. (S43)
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To avoid confusion, let us at this point remind ourselves of the meaning of all the indices appearing in Eqs. (S41) to (S43). The
superscript (𝑚) labels the translation group Γ (𝑚) of the supercell𝐶 (𝑚) and the subscript (𝑚, 𝑛) indicates that [𝛾 (𝑚) ] (𝑚,𝑛) denotes
the coset 𝛾 (𝑚)Γ (𝑛) . The IRs 𝐷 (_) of the finite group Γ (𝑚)/Γ (𝑛) are labeled by _ and they span the reciprocal space of the PBC
clusters formed by the super-supercell 𝐶 (𝑛) . For a specific IR 𝐷 (_) the matrix indices 𝑘 (_) ,𝑙 (_) range over the dimensions of the
IR (and never arise in the Euclidean Bloch Hamiltonian due to the fact that Euclidean translation groups only have 1D IRs). The
subscripts 𝑖, 𝑗 label the copies of the primitive cell 𝐶 (1) in the supercell 𝐶 (𝑚) and therefore range from 1 to |Γ (1)/Γ (𝑚) |, while
𝑢, 𝑣 range over the sites in the primitive cell 𝐶 (1) (and therefore do not arise if applying Bloch’s theorem to a single primitive
cell).

Finally, we take the limit 𝑛 → ∞, i.e., we let the super-supercell 𝐶 (𝑛) encompass the whole infinite lattice. Formally, this
implies the replacement of Γ (𝑚)/Γ (𝑛) by Γ (𝑚) , such that Eq. (S22) is block-diagonalized as

H =
∑︁
𝑘,𝑙

∑︁
𝑖, 𝑗

∑︁
𝑢,𝑣

𝑐𝑢
𝑖,𝑘
†

∑︁
𝛾 (𝑚) ∈Γ (𝑚)

h𝑢𝑣𝑖 𝑗
(
𝛾 (𝑚)

) (⊕
_

𝑑_𝐷
(_)

)
𝑘𝑙

(
𝛾 (𝑚)

)
𝑐𝑣𝑗,𝑙 (S44)

=
∑︁
𝑘,𝑙

∑︁
𝑖, 𝑗

∑︁
𝑢,𝑣

𝑐𝑢
𝑖,𝑘
†

(⊕
_

𝑑_𝐻

(
𝐷 (_)

))𝑢𝑣
𝑖 𝑗𝑘𝑙

𝑐𝑣𝑗,𝑙 (S45)

with Bloch Hamiltonian given in Eq. (5) of the main text,

𝐻 (𝐷) =
∑︁

𝛾 (𝑚) ∈Γ (𝑚)
h

(
𝛾 (𝑚)

)
⊗ 𝐷

(
𝛾 (𝑚)

)
, (S46)

where 𝐷 is now an IR of Γ (𝑚) , and

𝑐𝑢𝑖,𝑘 =
∑︁
𝑖′
𝑃𝑘𝑖′𝑐

𝑢

[
(1)
𝑖
[
(𝑚)
𝑖′
. (S47)

Let us remark that in Eq. (S45), we have kept the symbol “⊕”, even though in reality the direct sum now goes over a continuous
space of infinitely many IRs and a suitable measure over the representation space needs to be introduced [6]. We leave the
question of a mathematical formalization of the 𝑛→∞ limit for future studies.

In this work, we only ever explicitly sample the subspace of one-dimensional (1D) IRs, i.e., the Abelian Brillouin zone (ABZ),
which for the supercell 𝐶 (𝑚) is given by

ABZ(𝑚) =
{
𝛾
(𝑚)
𝑖
↦→ 𝐷k(𝑚)

(
𝛾
(𝑚)
𝑖

)
= ei𝑘 (𝑚)

𝑖 : k(𝑚) ∈ T2𝔤 (𝑚)
}
, (S48)

with the generators 𝛾 (𝑚)
𝑖

of Γ (𝑚) . The Abelian Bloch Hamiltonian is then given according to Eq. (S46):

𝐻 (𝑚)
(
k(𝑚)

)
=

∑︁
𝛾 (𝑚) ∈Γ (𝑚)

h
(
𝛾 (𝑚)

)
ei

∑2𝔤(𝑚)
𝑖=1 𝐾𝑖𝑘𝑖 , (S49)

where 𝔤 (𝑚) is the genus of the compactified 𝐶 (𝑚) cell, and 𝐾𝑖 the number of times the generator 𝛾 (𝑚)
𝑖

appears in 𝛾 (𝑚) minus the
number of times its inverse appears.

II. HOPPING MODELS

In this section, we give additional details on the models discussed in the main text. We specifically:

(i) provide explicit expressions for the Hamiltonians and for the quotient groups Δ/Γ (𝑚) specifying the supercells in Sec-
tions II A to II D,

(ii) illustrate the primitive cells and the model definitions of the Hamiltonians in Fig. S1 and illustrate their supercells in
Fig. S2,

(iii) show their density of states (DOS) in more detail in Figs. S3 and S4, and give the necessary parameters required to
reproduce the data, i.e., sampling parameters.

Note that in the supplementary data and code [7] we make available the graphs representing the triangular tessellations, the
lattices, the model Hamiltonians, and the supercells produced with our software package [2, 8], as well as the DOS data.
Furthermore, we provide example code on how to obtain and handle those objects.



9

A. Nearest-neighbor hopping models on {𝑝, 𝑞} lattices

We start with the nearest-neighbor (NN) hopping models on {𝑝, 𝑞} lattices, whose sites are given by only the elements of
𝑉𝑦 � 𝑇Δ+ (Δ+𝑦), i.e., the 𝑞-fold rotation-symmetric vertices of the Schwarz triangles of Δ(2, 𝑞, 𝑝). In the main text, we have only
briefly discussed the {8, 8} lattice, for which we have not shown all the data. Here, we show the full data in Section II A 1 and
Fig. S3a. While the NN hopping model on the {8, 3} lattice was not explicitly discussed in the main text, we briefly discuss it
here because of its relation to the NN hopping model on the octagon-kagome lattice and to the {8, 3}-Haldane model, which all
share Δ(2, 3, 8) as their space group.

1. {8, 8} lattice

The {8, 8} lattice is defined by the hyperbolic tessellation where eight octagons meet at each vertex, cf. Fig. S1a. Its space
group is the triangle group Δ(2, 8, 8) and the minimal unit cell, i.e., the primitive cell (depicted as a blue polygon in Fig. S1a) is
given by the smallest quotient T2.6 of Δ by one of its normal subgroups Γ (1) [9]:

𝐺 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, (𝑎𝑏)2, (𝑏𝑐)8, (𝑐𝑎)8, (𝑎𝑏𝑐)2, (𝑏𝑐)3 (𝑐𝑎)−1〉 , (S50)

with the generators 𝑎, 𝑏, 𝑐 the reflections across the sides of the Schwarz triangle, cf. Fig. 2. With 𝐺 isomorphic to the quotient
group Δ/Γ (1) , Γ (1) is given by the kernel of that isomorphism, which can be extracted using gap. With our algorithm for
constructing symmetric unit cells [2], we obtain

Γ (1) =
〈
𝛾1, 𝛾2, 𝛾3, 𝛾4

�� 𝛾2𝛾
−1
1 𝛾−1

4 𝛾3𝛾
−1
2 𝛾1𝛾4𝛾

−1
3

〉
(S51)

=
〈
𝛾1, 𝛾2, 𝛾3, 𝛾4

�� 𝛾1𝛾
−1
2 𝛾3𝛾

−1
4 𝛾−1

1 𝛾2𝛾
−1
3 𝛾4

〉
(S52)

and recognize the translation group of the Bolza cell which has been discussed extensively in recent literature [4, 10–12] on
hyperbolic tight-binding models, since it is the maximal translation group of the {8, 8}, {8, 3}, and {8, 4} lattices [13].

Using gap, we have found a normal sequence of translation subgroups Γ (𝑚) ◁ Δ(2, 8, 8) via the appropriate quotient groups
𝐺 (𝑚) � Δ/Γ (𝑚) given in Ref. 9, whose supercells preserve a maximum amount of symmetry. Using

𝑥 = 𝑎𝑏, 𝑦 = 𝑏𝑐, 𝑧 = 𝑐𝑎, (S53)

the quotient groups have the following presentations:

𝐺 (1) = 𝐺T2.6 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑧𝑦, 𝑦3𝑧−1〉 ,
𝐺 (2) = 𝐺T3.11 =

〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑧𝑦
〉
,

𝐺 (3) = 𝐺T5.13 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑦−2𝑧−1𝑦, 𝑥𝑧𝑦−1𝑧−2〉 ,
𝐺 (4) = 𝐺T9.20 =

〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑦−2𝑧−1𝑦
〉
,

𝐺 (5) = 𝐺T17.29 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑧𝑦−2𝑧−2𝑦, (𝑦𝑧−1𝑦2)2
〉
,

𝐺 (6) = 𝐺T33.44 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑧𝑦−2𝑧−2𝑦
〉
,

𝐺 (7) = 𝐺T65.78 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦8, 𝑧8, 𝑥𝑦−1𝑧𝑦−2 (𝑧−1𝑦)2, 𝑥(𝑧𝑦−1)2𝑧−2𝑦𝑧−1, 𝑦𝑥𝑧2𝑦2𝑥𝑧𝑦−1𝑧−1〉 .
(S54)

The corresponding connected symmetric supercells are illustrated in Fig. S2a and their triangle group graphs as well as boundary
identifications are given in the supplementary data and code [7]. Note that by construction they all preserve the symmetries that
leave their center invariant, i.e., eight-fold rotation and mirrors through the center.

Each octagon of the {8, 8} tessellation corresponds to a copy of the primitive unit cell and there is a single site in its center
shown as a black dot in Fig. S1a. The NN model on the {8, 8} lattice thus has the Hamiltonian

H = −
∑︁
⟨𝑖, 𝑗 ⟩

𝑐
†
𝑖
𝑐 𝑗 , (S55)

where ⟨𝑖, 𝑗⟩ denotes the centers of two neighboring octagons. The hopping processes starting in the primitive unit cell are
illustrated as red lines in Fig. S1a and the real-space hopping Hamiltonian is given in graph form in the supplementary data and
code [7].

For each cell 𝐶 (𝑚) in the sequence given by Eq. (S54), we diagonalized the Abelian Bloch Hamiltonian 𝐻 (𝑚)
(
k(𝑚)

)
[given

in Eq. (S49)] for 109 randomly sampled points in T2𝔤 (𝑚) [corresponding to the ABZ given in Eq. (S48)]. From the eigenenergies
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FIG. S1. Model definitions: primitive cells (blue polygon) with sites (black dots) and hoppings (red lines) for (a) the nearest-neighbor (NN)
model on the {8, 8} lattice, (b) the NN model on the {8, 3} lattice, (c) the NN model on the octagon-kagome lattice (the line graph of the {8, 3}
lattice, and (d) the Haldane model on the {8, 3} lattice). (d) The sublattice potential ±ℎ0 is indicated by filled and empty disks on the sites, the
NN hoppings ℎ1 are shown by green solid lines and the next-NN hoppings with amplitudes ℎ2e±i𝜙 by dashed magenta lines.

FIG. S2. Supercell sequences used to compute the density of states shown in the main text and in Figs. S3 and S4. The supercells are specified
by the corresponding quotients 𝐺 � Δ/Γ in the form “𝑇𝔤. 𝑗”, denoting the 𝑗 th quotient of any triangle group Δ(𝑟, 𝑞, 𝑝) having genus 𝔤 [9].
Note that all the sequences start with a genus-2 unit cell, such that, per the Riemann-Hurwitz formula, 𝑁 = 𝔤 − 1 is the number of unit cells in
the supercell. (a) Δ(2, 8, 8), relevant for the {8, 8} lattice: T2.6, T3.11, T5.13, T9.20, T17.29, T33.44, [T65.78 (not shown)]. (b) Δ(2, 3, 8),
relevant for the {8, 3} lattice and the octagon-kagome lattice: T2.1, T5.1, T17.2, T33.1. (Note that the first two of the constructed super-cells
match precisely those found for translation groups T2.6 and T5.13 for the Δ(2, 8, 8) lattice.) (c) Δ(2, 4, 6), relevant for the {6, 4} lattice: T2.2,
T5.4, T9.3, T33.11, [T65.9 (not shown)].
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FIG. S3. Density of states of the nearest-neighbor hopping model on (a) the {8, 8} and (b) the {8, 3} lattice obtained using the supercell
method. In (a) the supercell sequence T2.6, T3.11, T5.13, T9.20, T17.29, T33.44, T65.78 with 1, 2, 4, 8, 16, 32, 64 unit cells per supercell
was used, while in (b) the sequence T2.1, T5.1, T17.2, T33.1 with 1, 4, 16, 32 unit cells was used. In both cases, the energy resolution is 0.005
with a moving average with window 0.01.

thus obtained, we computed the DOS 𝜌 (𝑚) (𝐸) for an energy resolution of d𝐸 = 0.005, which was then smoothed using a moving
average with window 2 d𝐸 = 0.01, cf. Fig. S3a. In Fig. 1f in the main text we additionally show the additional red curve, which
was obtained by extrapolating the data in Fig. S3a by eye, observing the fact that the DOS near the band edges becomes sharper,
while the oscillations on the plateau are becoming smaller for larger supercells. We provide the raw data for the DOS in the
supplementary data and code [7].

2. {8, 3} lattice

The {8, 3} lattice is defined by the hyperbolic tessellation where three octagons meet at each vertex, cf. Fig. S1b, and can
therefore be considered a generalization of the honeycomb lattice [11]. Its space group is the triangle group Δ(2, 3, 8) and the
primitive cell (blue polygon in Fig. S1b) is given by the quotient group Δ/Γ (1) denoted by T2.1 [9]:

𝐺 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, (𝑎𝑏)2, (𝑏𝑐)3, (𝑐𝑎)8, 𝑐(𝑎𝑏𝑐)2𝑎(𝑎𝑏𝑐)−1𝑐−1𝑎𝑏𝑐𝑎
〉
, (S56)

resulting in the translation group

Γ (1) =
〈
𝛾1, 𝛾2, 𝛾3, 𝛾4

�� 𝛾4𝛾1𝛾
−1
2 𝛾3𝛾

−1
4 𝛾−1

1 𝛾2𝛾
−1
3

〉
(S57)

=
〈
𝛾1, 𝛾2, 𝛾3, 𝛾4

�� 𝛾1𝛾
−1
2 𝛾3𝛾

−1
4 𝛾−1

1 𝛾2𝛾
−1
3 𝛾4

〉
, (S58)

which we once more identify as the translation group of the Bolza cell.
Using gap, we have found a normal sequence of translation subgroups Γ (𝑚) ◁ Δ(2, 3, 8) via the appropriate quotient groups

𝐺 (𝑚) � Δ/Γ (𝑚) given in Ref. 9: With 𝑥, 𝑦, and 𝑧 given in Eq. (S53),

𝐺 (1) = 𝐺T2.1 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦3, 𝑧8, 𝑧𝑦𝑥𝑧(𝑧𝑦)−1𝑥𝑧
〉
,

𝐺 (2) = 𝐺T5.1 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦3, 𝑧8, 𝑧3𝑦𝑧−1𝑥𝑧𝑦−1𝑥𝑦−1𝑧−2𝑥
〉
,

𝐺 (3) = 𝐺T17.2 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦3, 𝑧8, (𝑧2𝑦𝑥)2 (𝑧𝑦−1𝑧−1𝑥)2
〉
,

𝐺 (4) = 𝐺T33.1 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦3, 𝑧8, 𝑥𝑧2 (𝑧𝑦𝑥)3𝑧2𝑦2𝑧−2𝑥𝑦−1𝑧−2〉 ,
(S59)

with the corresponding connected and symmetric supercells illustrated in Fig. S2b and their triangle group graphs as well as
boundary identifications given in the supplementary data and code [7].

The {8, 3} lattice is formed by all the three-fold symmetric points and the NN model has the Hamiltonian

H = −
∑︁
⟨𝑖, 𝑗 ⟩

𝑐
†
𝑖
𝑐 𝑗 , (S60)

where ⟨𝑖, 𝑗⟩ denotes the hopping along a side of an octagon, cf. Fig. S1b. The real-space hopping Hamiltonian is given in graph
form in the supplementary data and code [7]. Again we consider the ABZ and Bloch Hamiltonian given in Eqs. (S48) and (S49),
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respectively, but now for the sequence of supercells given in Eq. (S59). We randomly sampled 108 points in T2𝔤 (𝑚) , computed
the spectrum of 𝐻 (𝑚)

(
k(𝑚)

)
and from that the DOS 𝜌 (𝑚) (𝐸) for an energy resolution of d𝐸 = 0.005, which was then smoothed

using a moving average with window 2 d𝐸 = 0.01, cf. Fig. S3b. We provide the raw data for the DOS in the supplementary data
and code [7].

3. Origin of the observed dips in the computed spectra at 𝐸 = 0

One systematic feature appearing in the presented DOS curves for the elementary NN model on both the {8, 3} and the {8, 8}
lattice is the sharp dip at 𝐸 = 0. This feature becomes narrower for computations on larger supercells, and is expected to vanish
altogether when extrapolating to the thermodynamic limit. Below, we trace the appearance of this undesired behavior back to
a chiral symmetry of these particular Hamiltonians, and explain how this feature is removed when enlarging the supercell. For
concreteness, we explicitly consider the {8, 8} model although the presented arguments can be adapted for any NN model on a
bipartite lattice.

The elementary nearest-neighbor model on the {8, 8} lattice has a single orbital per primitive cell, such that the Abelian Bloch
states on that primitive cell form a single continuous band:

𝐸 (k) = −2
4∑︁
𝑖=1

cos(𝑘𝑖), (S61)

in the 4D Abelian Brillouin zone (BZ). The condition 𝐸 = 0 implies that the states at zero energy form a (Fermi) surface with
codimension 1 (i.e., a 3D hypersurface), resulting in a finite DOS at 𝐸 = 0.

When considering a supercell, e.g., the 2-supercell, two things happen. First, the 4D BZ is reduced and the bands are folded,
resulting in two bands in the reduced BZ. The specifics of this particular BZ reduction induced by extending the primitive cell to
the 2-supercell are discussed in the Supplementary Material of Ref. 14. The two obtained bands trivially intersect at 𝐸 = 0; yet,
the computed DOS is unaffected by this step, because the band folding does not alter the collection of the captured eigenstates. In
particular, the two bands are not coupled in the reduced BZ. This is because states in both bands still respect the full periodicity
in primitive cells and carry a different value of a quantum number, namely of the initial four-component momentum.

Second, and this is the special feature of hyperbolic lattices, two more momentum components are introduced, increasing
the BZ dimension from 4 to 6. Crucially, the two folded bands constructed on the reduced BZ are coupled when extended in
these two additional momentum directions. Such a coupling is allowed because the states on the extended bands are no longer
periodic in the primitive cells and thus no longer distinguished by the initial four-component momentum. As a result, the ensuing
hybridization of the folded bands in the additional momentum directions transforms the trivial band crossings into band nodes.

To understand the codimension of the resulting nodes, one can rely on the existing literature on characterizing band nodes in
various symmetry classes. Here, we apply the results and the terminology of Ref. 15, which points out the key role of ‘local-in-k
symmetries’, i.e., those that act on Bloch Hamiltonians while leaving momentum invariant. The codimension, in turn, explains
the scaling of the DOS near 𝐸 = 0.

In particular, the considered hyperbolic lattice model clearly has spinless time-reversal symmetry T 2 = +1 which acts through
complex conjugation and maps T : k ↦→ −k. This symmetry can potentially be combined into a local-in-k symmetry with a
suitable inversion symmetry that also flips the sign of the momentum vector. In the 2-supercell of the {8, 8} lattice, there are
several inequivalent choices for the inversion center, namely a site, the mid-point of an edge, and the center of a face. It is derived
in the Supplemental Material of Ref. 14, specifically around Eq. (F10), that it is the inversion with respect to the edge, PE, that
acts on the supercell Bloch Hamiltonian by flipping the momentum sign: PE : k ↦→ −k. The composition PET is therefore
an antiunitary local-in-k symmetry with (PET)2 = +1. Additionally, the Bloch Hamiltonian exhibits a sublattice symmetry S
because the two sites per 2-supercell form a bipartition of the lattice. Since the two sublattices are exchanged under inversion
PE, the sublattice parity is odd [15] so that the local-in-k particle-hole symmetry squares to (SPET)2 = −1. The identified
local-in-k symmetries

S, (PET)2 = +1, (SPET)2 = −1 (S62)

locate the supercell Hamiltonian in nodal class CI, which exhibits band nodes of codimension 𝛿 = 2 [15]. An analogous set
of local-in-k symmetries can also be identified in all the larger supercells. Importantly, the sublattice symmetry S enforces a
particle-hole symmetry of the spectrum at each k. This pins all the nodes to the same energy 𝐸 = 0, resulting in the pronounced
dip in the computed DOS data.

Let us next discuss the character of this DOS suppression. Elementary integration can be used to show that band nodes of
codimension 𝛿 pinned to 𝐸 = 0 (and with the generically assumed linear dispersion) lead to the DOS scaling 𝜌(𝐸) ∝ |𝐸 | 𝛿−1 [14].
In the considered model on the {8, 8} lattice, 𝛿 = 2 implies vanishing DOS at 𝐸 = 0 with linear scaling. This is consistent with
the dip of the 2-supercell data in Fig. 1f, and with the dips observed for larger supercells in Fig. S3 above.
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FIG. S4. Density of states of (a) the nearest-neighbor hopping model on the octagon-kagome lattice and (b) the Haldane model on the {8, 3}
lattice with 𝑡1 = 1, 𝑡2 = 1/6, 𝜙 = 𝜋/2, 𝑚 = 1/3 obtained using the supercell method. In both cases, data on the supercell sequence T2.1, T5.1,
T17.2, T33.1 with 1, 4, 16, 32 unit cells is shown and the energy resolution is 0.005 with a moving average with window 0.01.

To understand how the dip ultimately disappears in the converged DOS for large supercells, first note that the band folding
at each step multiplies the number of energy bands while keeping the overall bandwidth 𝑊 fixed. Therefore, the energy extent
Δ𝑊 of any individual band is expected to shrink with the size 𝑁 of the 𝑁-supercell as Δ𝑊 ≃ 𝑊/𝑁 . (If there are 𝑀 > 1 sites
per primitive cell, as is the case with 𝑀 = 16 for the {8, 3} lattice, then Δ𝑊 ≃ 𝑊/𝑀𝑁 .) At the same time, the linear DOS
scaling 𝜌(𝐸) ∝ |𝐸 | is an approximation that applies only in an energy range where the dispersion around the node can be linearly
approximated. Since such a linear approximation cannot go beyond the energy extent of the band forming the node, the linear
dip in the DOS is restricted to energies |𝐸 | ≲ 𝑊/𝑀𝑁 . This inequality explains the rapid shrinking of the dip at 𝐸 = 0 with the
growing supercell size 𝑁 , visible in Fig. S3a, and also why the dip is significantly narrower in the {8, 3} data in Fig. S3b.

We finally remark that the discussed dip is generically absent in models without sublattice/chiral symmetry. Since band nodes
of such more general models are not pinned to a single value of energy, the node-induced DOS suppression is effectively smeared
over a broader range of energies, resulting in smoother computed data.

B. Nearest-neighbor models on kagome lattices

The triangle group Δ(2, 3, 𝑝) allows not only constructing the {𝑝, 3} lattice, but also its line graph, the 𝑝-gon-kagome lattice
with sites given by 𝑉𝑥 � 𝑇Δ+ (Δ+𝑥), i.e., the Schwarz triangle vertices with two-fold rotation symmetry. Here, we consider the
octagon-kagome lattice, i.e., the case 𝑝 = 8, cf. Fig. S1c. In the supplementary data and code [7], we additionally provide the
real-space hopping Hamiltonian in graph form as well as the raw data for the DOS.

As an example, we study the octagon-kagome lattice, i.e., the line graph of the {8, 3} lattice discussed above. The supercells
and the corresponding translation groups do not depend on the internal structure of the primitive cells, i.e., where orbitals are
placed. Thus, the discussion from the previous subsection applies to the octagon-kagome lattice and we can directly proceed to
the results. Figures 4a and S4a show the DOS 𝜌 (𝑚) (𝐸) obtained from randomly sampling 108 points in T2𝔤 (𝑚) for an energy
resolution of d𝐸 = 0.005 and smoothed using a moving average with window 2 d𝐸 = 0.01 for the sequence in Eq. (S59).
Comparing Figs. S3b and S4a, we observe that the DOS of the NN model on the {8, 3} lattice and on its line graph match up to
the flat band at 𝐸 = 2 in the latter case. This is consistent with what is expected from graph theory [16].

C. Haldane model on {8, 3} lattice

The Haldane model on hyperbolic lattices has been introduced in Refs. 11, 12, and 17. The Hamiltonian illustrated in Fig. S1d
takes the form [12]

H = ℎ1
∑︁
⟨𝑖, 𝑗 ⟩

(
𝑐𝑖
†𝑐 𝑗 + h.c.

)
+ ℎ2

∑︁
←−
𝑖 𝑗

(
ei𝜙𝑐𝑖

†𝑐 𝑗 + h.c.
)
+ ℎ0

(∑︁
𝑖∈𝐴

𝑐𝑖
†𝑐𝑖 −

∑︁
𝑖∈𝐵

𝑐𝑖
†𝑐𝑖

)
(S63)
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with NN hopping amplitude ℎ1 (solid green lines), next-NN hopping amplitude ℎ2ei𝜙 (dashed magenta lines), where←−𝑖 𝑗 denotes
hopping from site 𝑗 to 𝑖 in mathematically positive direction (counterclockwise) for a given octagon and 𝜙 is the flux parameter.
Additionally, there is a staggered sublattice potential (called sublattice mass in the main text) ±ℎ0 on the two sublattices 𝐴 and 𝐵
(filled and empty sites in the figure). In the supplementary data and code [7], we provide the real-space hopping Hamiltonian in
graph form. We have chosen the same parameter values as Ref. 11: ℎ1 = 1, ℎ2 = 1/6, 𝜙 = 𝜋/2, and ℎ0 = 1/3.

Given that the model is defined on the {8, 3} lattice, the supercells are once more the ones given in Eq. (S59). In particular,
the unit cell T2.1 is exactly the primitive cell used in Ref. 11, such that the DOS obtained from it matches the data presented
there. With random sampling of 108 points in T2𝔤 (𝑚) , we have computed the DOS with an energy resolution of d𝐸 = 0.005 and
smoothed using a moving average with window 2 d𝐸 = 0.01. The resulting data is shown in Figs. 4b and S4b and given as raw
data in the supplementary data and code [7]. We observe the stability of all three energy gaps as we approach the thermodynamic
limit.

D. Benalcazar-Bernevig-Hughes model on {6, 4} lattice

The Benalcazar-Bernevig-Hughes (BBH) model [18], originally defined on the square lattice, can be easily generalized to
hyperbolic {𝑝, 4} lattices with even 𝑝 as described in the main text for 𝑝 = 6.

1. {6, 4} lattice

The {6, 4} lattice is defined by the hyperbolic tessellation where four hexagons meet at each vertex, i.e., it is formed by the
four-fold rotation symmetric vertices 𝑉𝑦 of the Schwarz triangles, cf. Fig. S5. Its space group is the triangle group Δ(2, 4, 6) and
the primitive cell (blue polygon in Fig. S5) is given by the smallest quotient T2.2 of Δ with one of its normal subgroups Γ (1) [9]:

𝐺 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, (𝑎𝑏)2, (𝑏𝑐)4, (𝑐𝑎)6, (𝑏𝑐𝑎−1𝑐−1)2
〉
, (S64)

giving

Γ (1) =
〈
𝛾1, 𝛾2, 𝛾3, 𝛾4

�� 𝛾4𝛾1𝛾3𝛾
−1
4 𝛾−1

3 𝛾−1
2 𝛾−1

1 𝛾2
〉

(S65)

=
〈
𝛾1, 𝛾2, 𝛾3, 𝛾4

�� 𝛾1𝛾2𝛾3𝛾4𝛾
−1
3 𝛾−1

1 𝛾−1
4 𝛾−1

2
〉
. (S66)

In Ref. 12, a different presentation was found for this group, with six generators 𝛾1, . . . , 𝛾6 and three relators 𝛾1𝛾3𝛾5, 𝛾2𝛾4𝛾6,
and 𝛾1𝛾2𝛾3𝛾4𝛾5𝛾6. Substituting 𝛾5 = 𝛾−1

3 𝛾−1
1 and 𝛾6 = 𝛾−1

4 𝛾−1
2 from the first two relators into the third relator, we see that this

presentation is equivalent to that found in Eq. (S66).
Using gap, we have found a normal sequence of translation subgroups Γ (𝑚) ◁ Δ(2, 4, 6) via the appropriate quotient groups

𝐺 (𝑚) � Δ/Γ (𝑚) given in Ref. 9: With 𝑥, 𝑦, and 𝑧 given in Eq. (S53),

𝐺 (1) = 𝐺T2.2 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦4, 𝑧6, (𝑦𝑧−1)2
〉
,

𝐺 (2) = 𝐺T5.4 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦4, 𝑧6, 𝑧𝑦𝑧−1𝑥𝑦−1𝑧−2𝑥
〉
,

𝐺 (3) = 𝐺T9.3 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦4, 𝑧6, 𝑧𝑦𝑥𝑧𝑦2𝑧−1𝑥𝑧𝑦−1, 𝑧𝑦𝑧−1𝑦𝑥𝑦−1𝑧−1𝑥𝑦−1𝑧
〉
,

𝐺 (4) = 𝐺T33.11 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦4, 𝑧6, 𝑥𝑧𝑦−1𝑧(𝑦𝑧−1)2𝑥𝑦−1𝑧𝑦−1𝑧−1𝑦
〉
,

𝐺 (4) = 𝐺T65.9 =
〈
𝑎, 𝑏, 𝑐

�� 𝑎2, 𝑏2, 𝑐2, 𝑥2, 𝑦4, 𝑧6, 𝑦−1𝑧(𝑦𝑧−1)2𝑦𝑥𝑦−1𝑧2 (𝑦−1𝑧)2, (𝑥𝑧𝑦𝑧−1)2 (𝑥𝑦−1𝑧−2)2
〉
,

(S67)

with the corresponding connected symmetric supercells illustrated in Fig. S2c and their triangle group graphs as well as boundary
identifications given in the supplementary data and code [7].

2. Benalcazar-Bernevig-Hughes model

The BBH model is defined on the {6, 4} lattice with four orbitals on each site, i.e., on the vertices of the hexagons, cf. Fig. S5.
The four orbitals labeled by numbers 1 to 4 are coupled cyclically by an on-site term with amplitude ±ℎ0, where a single one of
the four couplings carries a minus sign (dashed magenta line) and the other three a plus sign (solid magenta line), thus encoding
a magnetic 𝜋-flux through the cycle. If each orbital is assigned to one of the four hexagons meeting at the lattice site, the orbitals
on different sites assigned to the same hexagon are again coupled cyclically by a hopping with amplitude ±ℎ1 (solid green
line). To encode 𝜋-fluxes through all the rectangles along the bonds of the underlying {6, 4} lattice, the green bonds forming a
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FIG. S5. Definition of the Benalcazar-Bernevig-Hughes model on the {6, 4} lattice (black lines) and choice of gauge implementing the
𝜋-fluxes through the squares and rectangles. There are four orbitals (black dots labeled by black numbers) at each site, coupled by inter-site
hoppings ±ℎ0 (magenta) and intra-site hoppings ±ℎ1 (green). Dashed lines indicate negative hopping amplitudes. The primitive cell (blue
polygon) and its edge identifications are shown: the edge 1̄ is related to 1 by the translation generator 𝛾1 (�̃�1 for the supercell). Edges related
by composite translations are labeled by 𝛼 = 𝛾−1

3 𝛾−1
1 , �̄�, 𝛽 = 𝛾−1

4 𝛾−1
2 , and 𝛽.

hexagon centered at the corner of the primitive cell carry a minus sign. Note that while the chosen gauge does not respect all the
symmetries, the physical flux pattern does, cf. Fig. 5 of the main text. This results in the following Hamiltonian

H = ℎ1


∑︁
⟨𝑖, 𝑗 ⟩c

®𝑐†
𝑖

©«
1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

ª®®®¬®𝑐 𝑗 +
∑︁
⟨𝑖, 𝑗 ⟩b

®𝑐†
𝑖

©«
0 0 0 0
0 0 0 1
0 0 −1 0
0 0 0 0

ª®®®¬®𝑐 𝑗 + h.c.

 + ℎ0
∑︁
𝑖

®𝑐†
𝑖

©«
0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0

ª®®®¬®𝑐𝑖 , (S68)

where ⟨𝑖, 𝑗⟩c denotes NNs within the primitive cell, ⟨𝑖, 𝑗⟩b denotes NNs crossing the boundary of the primitive cell, cf. Fig. S5,
and the matrices are given in the basis of orbitals 1, 2, 3, 4 (in that order). As for the other models, we provide the real-space
hopping Hamiltonian in graph form in the supplementary data and code [7].

With random sampling of 108 (106 for T33.11 and T65.9) points in T2𝔤 (𝑚) , we have computed the DOS with an energy
resolution of d𝐸 = 0.005 and smoothed using a moving average with window 2 d𝐸 = 0.01. The resulting data is shown in Fig. 5b
and given as raw data in the supplementary data and code [7].

III. CONVERGENCE OF THE SUPERCELL METHOD

In this section, we provide additional data demonstrating the convergence properties of the supercell method. First, in
Section III A, we show the convergence of the density of states (DOS) obtained from a fixed supercell with increasing density
of random sampling of the Abelian Brillouin zone (ABZ). We here also observe that for the typical size of the largest supercell
considered, the DOS obtained from the spectrum at k = 0—i.e., the spectrum of the corresponding PBC cluster—does not
reproduce the characteristic features of the DOS in the thermodynamic limit; in constrast, the DOS converges rapidly upon the
introduction of nontrivial momenta, i.e., under random sampling of the ABZ. Then, in Section III B, we compare the convergence
of different normal sequences of supercells, and observe that the DOS appears to converge to the same limit, thereby consolidating
our expectation.

A. Convergence with number of points in the Abelian Brillouin zone

Besides allowing a meaningful labeling of eigenstates and therefore simplifying a symmetry analysis [12], one of the main
powers of the reciprocal-space description is that it allows us to work with small systems but nevertheless obtain good approx-



16

-5 0 5
0

1

2

3

4

5

-5 0 5

0.00

0.05

0.10

0.15

0.20

FIG. S6. Convergence of density of states (DOS) of the nearest-neighbor hopping model defined on the 64-supercell T65.78 of the {8, 8}
lattice. (a) DOS obtained from treating the 64-supercell as a PBC cluster with 64 sites, effectively setting the Abelian momentum k = 0. The
data has been obtained with a resolution of d𝐸 = 0.005 and smoothed with a moving average over windows of width 0.08. (b) DOS obtained
from treating the 64-supercell as the unit cell of a large PBC cluster and randomly sampling Abelian momenta. The number of sampled
momenta is given in the legend. The data has been obtained with a resolution of d𝐸 = 0.005 and smoothed with a moving average over windows
of width 0.01.
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FIG. S7. Convergence of density of states (DOS) of the nearest-neighbor hopping model defined on the 32-supercell T33.1 of the {8, 3} lattice.
(a) DOS obtained from treating the 32-supercell as a PBC cluster with 512 sites, effectively setting the Abelian momentum k = 0. The data
has been obtained with a resolution of d𝐸 = 0.005 and smoothed with a moving average over windows of width 0.16. (b) DOS obtained from
treating the 32-supercell as the unit cell of a large PBC cluster and randomly sampling Abelian momenta. The number of sampled momenta
is given in the legend. The data has been obtained with a resolution of d𝐸 = 0.005 and smoothed with a moving average over windows of
width 0.01.

imations of the spectra of larger systems. Formally, Bloch states allow us to approximate models on large PBC clusters, i.e.,
Eq. (S27) or even its limit for 𝑛 → ∞, by diagonalizing only matrices defined on smaller supercells, i.e., Eqs. (S28) and (S49).
To demonstrate this power, we compare

(a) the DOS obtained from treating a given supercell as a PBC cluster in the form of Eq. (S23) with matrix h𝑢𝑣
𝑖 𝑗
(𝛾) =

ℎ𝑢𝑣
(
[𝑖𝛾[

−1
𝑗

)
, which corresponds to evaluating the Abelian Bloch Hamiltonian in Eq. (S49) at k = 0, to

(b) the DOS obtained from treating the same supercell as a unit cell of a larger PBC cluster, where the same matrix h𝑢𝑣
𝑖 𝑗
(𝛾)

appears in Eq. (S41), and randomly sampling the ABZ given in Eq. (S48) with increasing number of sampled points.

Note that (a) is, in essence, the approach of Ref. 19, where the authors diagonalize h𝑢𝑣
𝑖 𝑗

on extremely large PBC clusters whose
associated translation groups also form sequences of normal subgroups, albeit different ones from the ones studied here.

In Fig. S6, we show the data described above for the NN model on the supercell T65.78 of the {8, 8} lattice. The DOS obtained
from simply diagonalizing the 64-site PBC cluster is shown in Fig. S6a and is very far from the converged DOS in Fig. S3a. On
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FIG. S8. Density of states of the nearest-neighbor hopping model on the {8, 8} lattice [cf. Fig. S3a] for (a) the supercell sequence T2.6, T3.11,
T5.13, T9.22, T17.35, T33.58, T65.81 with 1, 2, 4, 8, 16, 32, 64 unit cells per supercell and (b) the sequence T2.6, T10.22, T37.37, T73.71
with 1, 9, 36, 72 unit cells per supercell. In both cases, the energy resolution is 0.005 with a moving average with window 0.01.

the other hand, Fig. S6b shows that upon introducing Abelian momenta, the DOS rapidly converges, with 104 (dark red line)
randomly sampled points already reproducing most of the features, and 107 (black line) being basically indistinguishable from
the converged curve shown in Fig. S3a. Note that here we are considering convergence for a fixed supercell in the number of
sampled momenta, and not in the sequence of supercells; in the latter case T65.78 would be considered not fully converged.

We repeat the same analysis for the NN model on the smaller supercell T33.1 of the {8, 3} lattice, which contains 32×16 = 512
sites, cf. Fig. S7. As for the previous model, the DOS obtained from simply diagonalizing the 512-site PBC cluster is shown in
Fig. S7a and is very far from the converged DOS in Fig. S3b. On the other hand, Fig. S7b shows again that upon introducing
Abelian momenta, the DOS rapidly converges with 100 (light orange line) randomly sampled points already reproducing most
of the features and 104 (dark red line) being basically indistinguishable from the converged curve shown in Fig. S3b. A similar
convergence can be observed for the Haldane model on the same supercell.

B. Comparison of different supercell sequences

Since the supercell method does not produce unique normal sequences but allows for many different sequences for the same
lattice and choice of primitive cell, it remains to be shown that different sequences converge to the same limit. We demonstrate
this here using again the NN hopping models on the {8, 8} and the {8, 3} lattice. For the {8, 8} lattice, alternative normal
sequences to the one given in Eq. (S54) are [9]

T2.6,T3.11,T5.13,T9.22,T17.35,T33.58,T65.81; (S69)
T2.6,T10.22,T37.37,T73.71, (S70)

and the corresponding DOS data for 107 randomly sampled points in T2𝔤 (𝑚) is shown in Figs. S8a and S8b, respectively.
Comparing those two figures to Fig. S3a, we observe that they apparently converge to the same limit. For the {8, 3} lattice,
alternative normal sequences to the one given in Eq. (S59) are [9]

T2.1,T5.1,T17.2,T65.1; (S71)
T2.1,T10.1,T28.1,T82.1, (S72)

and the corresponding DOS data for 107 randomly sampled points in T2𝔤 (𝑚) is shown in Figs. S9a and S9b, respectively.
Comparing those two figures to Fig. S3b, we again observe apparent convergence to the same limit.

C. Comparison to continued-fraction method

The DOS of the very simple gapless nearest-neighbor hopping models was studied using the continued-fraction method in
Ref. 20. We here compare our results obtained for supercells of the {8, 8} and {8, 3} lattice that contain 72 and 1296 sites,
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FIG. S9. Density of states of the nearest-neighbor hopping model on the {8, 3} lattice [cf. Fig. S3b] for (a) the supercell sequence T2.1, T5.1,
T17.2, T65.1 with 1, 4, 16, 64 unit cells per supercell and (b) the sequence T2.1, T10.1, T28.1, T82.1 with 1, 9, 27, 81 unit cells per supercell.
In both cases, the energy resolution is 0.005 with a moving average with window 0.01.
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FIG. S10. Density of states of the nearest-neighbor hopping model on (a) the {8, 8} lattice and (b) the {8, 3} lattice obtained using the supercell
method (orange) and the continued-fraction method (black; results from Ref. 20). In (a) the supercell T73.71 with 72 sites and in (b) T82.1
with 1296 sites was used and in both cases, the energy resolution is 0.005 with a moving average with window 0.01.

respectively, to the results of Ref. 20 obtained from more than 109 sites. Figure S10 compares the DOS obtained from the two
methods and we observe that in both cases the data obtained from the supercell method clearly converges to those obtained using
the continued-fraction method. In particular for the {8, 3} lattice (Fig. S10b), almost no difference is discernible. On the other
hand, our results for the {8, 8} lattice are clearly not fully converged (which can be attributed to the much lower number of sites
in the corresponding supercell), but the core features are reproduced.

For a more quantitative comparison of the data, we compute the moments of the density of states. The 𝑛th moment 𝑀𝑛 of
𝜌(𝐸) is defined as

𝑀𝑛 =

∫ ∞

−∞
d𝐸 𝜌(𝐸)𝐸𝑛. (S73)

Due to the symmetry of the spectra for both the {8, 8} as well as the {8, 3} lattice, all odd moments vanish. In Tables S1 and S2,
we compare the moments obtained from the supercells discussed above to those obtained analytically in Ref. 20. For {8, 8}, we
observe that although the density of states obtained from the 72-site supercell T73.71 is clearly not yet converged (cf. Fig. S10a),
the first three even moments are reproduced exactly and the relative error remains below 10−4 up to the 16th moment. The
accuracy of the odd moments, which should all vanish identically, is similar: the first five odd moments are below 10−10 and up
to the 15th moment, all of them are below 10−4. For {8, 3}, Fig. S10b indicates a significantly better level of convergence and
we find accordingly that the first seven even moments, i.e., up to the 14th moment, are obtained exactly, while the relative error
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Odd moments Even moments
𝑛 Supercell Continued-fraction [20] 𝑛 Supercell Continued-fraction [20]

1 1.55 × 10−16 0 2 8 8
3 8.92 × 10−15 0 4 120 120
5 2.66 × 10−13 0 6 2 192 2192
7 7.48 × 10−12 0 8 44 263 44 264
9 2.02 × 10−10 0 10 950 582 950 608

11 5.19 × 10−9 0 12 21 288 185 21 288 912
13 1.45 × 10−7 0 14 491 503 907 491 515 088
15 3.96 × 10−6 0 16 11 614 603 543 11 614 244 072
17 1.10 × 10−4 0 18 279 540 473 553 279 495 834 368
19 2.97 × 10−3 0 20 6 828 817 799 853 6 826 071 585 040
21 8.18 × 10−2 0 22 168 891 218 655 925 168 755 930 104 880
23 2.24 0 24 4 220 862 714 087 351 4 214 946 994 935 248

TABLE S1. Odd (left) and even (right) moments of the density of states of the {8, 8} lattice obtained from the supercell (based on T73.71
and rounded to the nearest integer) and continued-fraction [20] methods. The numbers given by the latter are exact. For even moments, digits
highlighted in orange indicate deviation from the exact result.

Odd moments Even moments
𝑛 Supercell Continued-fraction [20] 𝑛 Supercell Continued-fraction [20]

1 9.13 × 10−17 0 2 3 3
3 6.37 × 10−16 0 4 15 15
5 3.59 × 10−15 0 6 87 87
7 4.09 × 10−14 0 8 549 549
9 3.06 × 10−13 0 10 3 663 3663

11 2.76 × 10−12 0 12 25 407 25 407
13 1.80 × 10−11 0 14 181 233 181 233
15 1.93 × 10−10 0 16 1 320 119 1 320 117
17 1.47 × 10−9 0 18 9 772 395 9 772 359
19 1.05 × 10−8 0 20 73 274 242 73 273 755
21 8.61 × 10−8 0 22 555 164 111 555 158 277
23 8.27 × 10−7 0 24 4 242 668 085 4 242 602 877
25 5.30 × 10−6 0 26 32 660 090 468 32 659 394 745
27 4.82 × 10−5 0 28 252 987 887 054 252 980 710 305
29 4.28 × 10−4 0 30 1 970 260 645 697 1 970 188 493 067
31 3.80 × 10−3 0 32 15 416 884 219 376 15 416 173 400 134
33 2.94 × 10−2 0 34 121 137 511 606 951 121 130 623 234 816
35 2.21 × 10−1 0 36 955 367 811 569 773 955 301 961 767 219

TABLE S2. Odd (left) and even (right) moments of the density of states of the {8, 3} lattice obtained from the supercell (based on T82.1
and rounded to the nearest integer) and continued-fraction [20] methods. The numbers given by the latter are exact. For even moments, digits
highlighted in orange indicate deviation from the exact result.

remains below 10−4 for the first 18 even moments. The first seven odd moments are below 10−10 and up to the 27th moment, all
of them are below 10−4.

Overall, the comparison with the exact moments gives further evidence to the convergence of the supercell method and affirms
our expectation that other quantities besides the density of states, where our reciprocal-space perspective can fully manifest its
efficacy, will experience similar convergence.



20

[1] J. Cano and B. Bradlyn, Annu. Rev. Condens. Matter Phys. 12, 225 (2020).
[2] P. M. Lenggenhager, J. Maciejko, and T. Bzdušek, HyperCells package for GAP (2023), (to be released upon publication).
[3] F. R. Lux and E. Prodan, arXiv:2212.10329 (2022).
[4] J. Maciejko and S. Rayan, Proc. Natl. Acad. Sci. U.S.A. 119, e2116869119 (2022).
[5] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed. (Springer, New York, 1996).
[6] Á. Nagy and S. Rayan, Ann. Henri Poincaré 10.1007/s00023-023-01336-8 (2023).
[7] P. M. Lenggenhager, J. Maciejko, and T. Bzdušek, Supplementary data for non-Abelian hyperbolic band theory from supercells. (2023),

(to be released upon publication).
[8] P. M. Lenggenhager, J. Maciejko, and T. Bzdušek, HyperBloch package for Mathematica (2023), (to be released upon publication).
[9] M. Conder, Quotients of triangle groups acting on surfaces of genus 2 to 101 (2007).

[10] J. Maciejko and S. Rayan, Sci. Adv. 7, abe9170 (2021).
[11] D. M. Urwyler, P. M. Lenggenhager, I. Boettcher, R. Thomale, T. Neupert, and T. Bzdušek, Phys. Rev. Lett. 129, 246402 (2022).
[12] A. Chen, Y. Guan, P. M. Lenggenhager, J. Maciejko, I. Boettcher, and T. Bzdušek, Phys. Rev. B 108, 085114 (2023).
[13] I. Boettcher, A. V. Gorshkov, A. J. Kollár, J. Maciejko, S. Rayan, and R. Thomale, Phys. Rev. B 105, 125118 (2022).
[14] T. Tummuru, A. Chen, P. M. Lenggenhager, T. Neupert, J. Maciejko, and T. Bzdušek, Hyperbolic non-Abelian semimetal (2023),

arXiv:2307.09876.
[15] T. Bzdušek and M. Sigrist, Phys. Rev. B 96, 155105 (2017).
[16] A. E. Brouwer and W. H. Haemers, Spectra of Graphs (Springer, 2012).
[17] W. Zhang, H. Yuan, N. Sun, H. Sun, and X. Zhang, Nat. Commun. 13, 2937 (2022).
[18] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science 357, 61 (2017).
[19] F. R. Lux and E. Prodan, arXiv:2303.15611 (2023).
[20] R. Mosseri and J. Vidal, Phys. Rev. B 108, 035154 (2023).

https://doi.org/10.1146/annurev-conmatphys-041720-124134
https://arxiv.org/abs/2212.10329
http://www.pnas.org/content/119/9/e2116869119
https://doi.org/10.1007/s00023-023-01336-8
https://www.math.auckland.ac.nz/~conder/TriangleGroupQuotients101.txt
https://doi.org/10.1126/sciadv.abe9170
https://doi.org/10.1103/PhysRevLett.129.246402
https://doi.org/10.1103/PhysRevB.108.085114
https://doi.org/10.1103/PhysRevB.105.125118
https://arxiv.org/abs/2307.09876
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1007/978-1-4614-1939-6
https://doi.org/10.1038/s41467-022-30631-x
https://doi.org/10.1126/science.aah6442
https://arxiv.org/abs/2303.15611
https://doi.org/10.1103/PhysRevB.108.035154

	Supplemental Material for: Non-Abelian hyperbolic band theory from supercells
	Contents
	Hyperbolic tight-binding models
	Algebraic labeling of Wyckoff positions and unit cells
	Tiling by Schwarz triangles
	Bravais lattice and unit cells
	Supercells

	Hopping Hamiltonian
	Bloch Hamiltonian

	Hopping models
	Nearest-neighbor hopping models on {p,q} lattices
	{8,8} lattice
	{8,3} lattice
	Origin of the observed dips in the computed spectra at E=0

	Nearest-neighbor models on kagome lattices
	Haldane model on {8,3} lattice
	Benalcazar-Bernevig-Hughes model on {6,4} lattice
	6,4 lattice
	Benalcazar-Bernevig-Hughes model


	Convergence of the supercell method
	Convergence with number of points in the Abelian Brillouin zone
	Comparison of different supercell sequences
	Comparison to continued-fraction method

	References


