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Wave functions on periodic lattices are commonly described by Bloch band theory. Besides Abelian
Bloch states labeled by a momentum vector, hyperbolic lattices support non-Abelian Bloch states that have
so far eluded analytical treatments. By adapting the solid-state-physics notions of supercells and zone
folding, we devise a method for the systematic construction of non-Abelian Bloch states. The method
applies Abelian band theory to sequences of supercells, recursively built as symmetric aggregates of
smaller cells, and enables a rapidly convergent computation of bulk spectra and eigenstates for both gapless
and gapped tight-binding models. Our supercell method provides an efficient means of approximating the
thermodynamic limit and marks a pivotal step toward a complete band-theoretic characterization of
hyperbolic lattices.
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Introduction.—Hyperbolic lattices are uniform discreti-
zations of the two-dimensional (2D) hyperbolic plane with
constant negative curvature. Recent experimental realiza-
tions in metamaterials, including coplanar-waveguide res-
onator [1] and electric-circuit networks [2], have elevated
them from objects of academic interest to building blocks
for engineering metamaterials. These advances have
sparked a renewed interest in condensed-matter models
on hyperbolic lattices, both in theory [3–20] and experi-
ment [21–25]. The fundamental construction involves
regular tessellations, where q copies of regular p-gons
meet at each vertex, denoted by fp; qg in Schläfli notation,
with ðp − 2Þðq − 2Þ > 4.
For Euclidean lattices, Bloch’s theorem labels

Hamiltonian eigenstates by irreducible representations
(IRs) of the translation group and enables a description
in terms of a unit cell together with reciprocal space. While
Bloch’s theorem has been generalized [26–33] to hyper-
bolic lattices, this comes with fundamental difficulties.
First, Bloch’s theorem requires periodic boundary condi-
tions (PBC), but constructing finite PBC clusters that
approximate the thermodynamic limit is highly non-
trivial [27,34,35]. Second, Euclidean translation groups
are Abelian, such that only 1D IRs exist. In contrast,
hyperbolic translation groups admit higher-dimensional
IRs; therefore, hyperbolic band theory (HBT) requires
non-Abelian Bloch states besides the usual Abelian
ones [27]. We here refer to the approximation that considers
only 1D IRs as Abelian HBT (AHBT) [26].
To deal with these difficulties, various avenues have been

explored. Finite flakes with open boundary conditions

exhibit a macroscopic fraction of boundary sites,
which is advantageous when interested in boundary
effects [10,15–17], but challenging when studying bulk
properties. Good agreement of AHBT with bulk-projected
spectra on flakes is observed in some models [10–12], but
crucial features are missed in others [36]. Very recently, Lux
and Prodan [34,35] have shown how to choose increasingly
large PBC clusters to achieve convergence to the thermo-
dynamic limit, whileMosseri and Vidal [37] have computed
the density of states (DOS) of gapless models using a
continued-fraction method. However, neither provides a
reciprocal-space description, i.e., a description in terms of
bulk states of the infinite lattice labeled by translation
quantum numbers.
In this Letter, we introduce the supercell method to gain

systematic access to non-Abelian Bloch states using AHBT
combined with particular sequences of PBC clusters. We
construct such sequences for various hyperbolic fp; qg
lattices using results from geometric group theory [38]. We
observe rapid convergence of the DOS to the thermo-
dynamic limit for various models. Our approach is com-
putationally more efficient than real-space methods and
affords the conceptual advantages of labeling eigenstates
by momenta. We implement our algorithms in an open-
source software package [39] for the computational algebra
system GAP [40].
Supercells.—A lattice consists of copies of some chosen

unit cell, generated by discrete translations forming a
translation group Γ. While one commonly chooses a
smallest primitive cell, implying a maximal translation
group Γð1Þ, one can instead consider a supercell, i.e.,
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collection of multiple primitive cells. Accordingly, only a
subgroup Γð2Þ of translations Γð1Þ is required to generate the
lattice. An example pair of primitive cell and supercell of
the (Euclidean) f4; 4g lattice and the (hyperbolic) f8; 8g
lattice is illustrated in Figs. 1(a) and 1(b), respectively.
Dividing the lattice into copies of a chosen cell facilitates

PBC, where the lattice is compactified on a closed manifold
by identifying sides related by certain translations. On
Euclidean lattices, such PBC clusters provide an approxi-
mation of the infinite lattice with well-converging bulk
properties [46]. To implement PBC on a single cell,
opposite sides are identified and the cell is compactified
on a torus—independent of its size [Fig. 1(c)]. In contrast,
due to the negative curvature, hyperbolic PBC clusters are
compactified on manifolds of genus g ≥ 2 [47]. According
to the Riemann-Hurwitz formula [48], the genus gsc of a
compactified supercell grows linearly with the numberN of
primitive cells:

gsc − 1 ¼ Nðgpc − 1Þ; ð1Þ

where gpc is the genus of the compactified primitive cell.
For the f8; 8g lattice, the primitive cell is compactified

on a genus-2 surface, and the two-unit-cell supercell
(2-supercell) on a genus-3 surface [Fig. 1(d)].
Translation symmetry further enables a reciprocal-space

description of the infinite lattice, considering not just a
single PBC cluster but also all of its translation-related
copies. The choice of cell affects the reciprocal-space
description. To illustrate this, consider nearest-neighbor
(NN) hopping models on the f4; 4g and f8; 8g lattices with
HamiltonianH ¼ −

P
hi;ji ci†cj, where hi; ji denotes NNs.

For Euclidean lattices, the Brillouin zone (BZ) is reduced
due to the enlargement of the cell, leading to band folding
[Fig. 1(e), inset]; nevertheless, the computed DOS is
independent of the cell size. By contrast, in the hyperbolic
case, the density of Abelian Bloch states changes signifi-
cantly when going from a primitive cell to a 2-supercell
[Fig. 1(f)]. However, below and in the Supplemental
Material [41], we demonstrate that the DOS converges
with increasing supercell size.
Real-space perspective.—The symmetries of a fp; qg

lattice are captured [28,49] by the triangle group Δ
generated by reflections a, b, c across the sides of a
triangle, called Schwarz triangle, with internal angles
ð2π=rÞ (with r ¼ 2), ð2π=qÞ, and ð2π=pÞ [Figs. 2(b)
and 2(c)]. This is reflected in its presentation

Δðr; q; pÞ ¼ ha; b; cja2; b2; c2; ðabÞr; ðbcÞq; ðcaÞpi ð2Þ

with the relators, appearing to the right of the vertical line,
set to the identity. Under the action of Δ, copies
of the fundamental Schwarz triangle sf tile the whole
plane [see Figs. 2(a) and 2(c) for the f8; 8g and f4; 4g
lattices, respectively]. Formally, the abstract set S of all

FIG. 1. Supercell construction for (a),(c),(e) the Euclidean
f4; 4g and (b),(d),(f) hyperbolic f8; 8g lattice. (a),(b) Primitive
cell (blue) and symmetrized 2-supercell (yellow). (c),(d) Com-
pactified cells in real space. (e) Density of states ρ of the nearest-
neighbor hopping model on the f4; 4g lattice as a function of
energy E showing the characteristic van Hove singularity. The
inset shows the momentum-space dispersion for the primitive cell
(solid blue line) and for the supercell (yellow dashed line).
(f) Density of Abelian Bloch states of the nearest-neighbor
hopping model on the f8; 8g lattice for the primitive cell (blue),
for the 2-supercell (yellow), and schematic extrapolation (for
details see Supplemental Material [41]) to large supercells (red).
The black arrow indicates a suppression near the band edges
(see text).

FIG. 2. Symmetries of hyperbolic lattices. (a) f8; 8g lattice
(black lines) with the triangle group Δð2; 8; 8Þ as space group
(indicated by gray/white triangles). The primitive cell (blue
polygon) and 2-supercell (yellow polygon) and their edge
identifications are shown: the edge 1̄ is related to 1 by the
translation generator γ1 (γ̃1 for the supercell). Edges related by
composite translations are labeled by α and β [41]. (b) Funda-
mental Schwarz triangle (gray) with reflections a, b, c across the
edges of the triangle and rotations x ¼ ab, y ¼ bc, z ¼ ca
around the vertices. (c) Square lattice with primitive cell, super-
cell, triangle group Δð2; 4; 4Þ, and reflection lines a, b, c.

PHYSICAL REVIEW LETTERS 131, 226401 (2023)

226401-2



Schwarz triangles is the orbit of sf under right action
of Δ∶ S ¼ sf · Δ.
Interpreted as a space group,Δ encompasses point-group

operations and translations. While the point group is
generally not a subgroup of Δ (even in Euclidean lattices),
translations form a normal subgroup Γ◃Δ [50], i.e., any
translation conjugated by a reflection or rotation is again
a translation. Indeed, Γ is usually defined [12,28] as
the largest torsion-free normal subgroup of orientation-
preserving elements of Δ, where torsion-freeness captures
the absence of elements of finite order in translation groups.
Since Γ◃Δ, the quotient Δ=Γ forms a group and plays the
role of the point group. The transversal TΔðΓÞ is a specific
set of representatives of Δ=Γ.
The choice of Γ defines the cell, which comprises a finite

number of Schwarz triangles [Fig. 2(a)] and therefore
corresponds to a subset C ⊂ S such that (i) none of the
elements are related by translations, and (ii) the right action
of Γ on C recovers S, i.e., S ¼ C · Γ. The coset decom-
position Δ ¼ ∪t∈TΔðΓÞ Γt implies that C ¼ sf · TΔðΓÞ.
Different choices of TΔðΓÞ lead to cells C differing in
connectedness and symmetry. Our algorithms [39] take
Δ=Γ as input, construct random and (for sufficiently small
quotients) connected symmetric cells, and extract boundary
identifications.
Our supercell method is a natural and systematic way to

form sequences of PBC clusters suited to a reciprocal-space
interpretation. We construct increasingly larger supercells,
by recursively accreting smaller (super)cells in a symmetric
fashion, starting with a single primitive cell. This results in
a nested sequence of finite-index normal subgroups,

Γð1Þ
▹Γð2Þ

▹ � � �▹ΓðmÞ
▹ � � � ; ð3Þ

where ΓðmÞ
◃Δ for all m implies normality of the subgroup

relationships in Eq. (3). Although there is a unique plane-
filling hyperbolic fp; qg lattice, the PBC clusters can have
different infinite-size limits [27], indicating the choice of
sequence is crucial. Recently, Lux and Prodan [34,35]
proposed a similar condition with the additional constraint
∩∞
m≥1 ΓðmÞ ¼ f1g and argued that such sequences lead to a

well-defined thermodynamic limit [51]. Based on our
results, we conjecture that the supercell sequences can
be extended in a way that satisfies that additional con-
straint. While the supercell method does not give a unique
sequence, we anticipate that all valid sequences converge to
the same limit, consistent with our observations [41].
Translation symmetry allows us to define hopping

models by specifying only the hopping amplitudes
huvðγÞ from site v in the primitive cell Cð1Þ to site u in
the primitive cell translated by γ ∈Γð1Þ. (Here CðmÞ is the
cell associated with the translation group ΓðmÞ, and NðmÞ ¼
jΓð1Þ=ΓðmÞj counts primitive cells in CðmÞ.) We additionally
subdivide the lattice into copies of the NðmÞ-supercell CðmÞ,

so that the NðmÞ copies of Cð1Þ in CðmÞ are generated by the
quotient group Γð1Þ=ΓðmÞ. By the coset decomposition,
copies of the primitive cell are specified by ηiγ̃ with
transversal elements ηi ∈TΓð1Þ ðΓðmÞÞ and γ̃ ∈ΓðmÞ, and
the most general translation-invariant hopping model takes
the form [41]

H ¼
X

γ̃;γ̃0 ∈ΓðmÞ

ηi;ηj ∈TΓð1Þ ðΓðmÞÞ

X

u;v

huvðηiγ̃γ̃0−1η−1j Þcu†ηi γ̃cvηj γ̃0 ; ð4Þ

where ηiγ̃γ̃0−1η−1j translates the primitive cell at ηjγ̃0 to that
at ηiγ̃. Our algorithms [39,52] define hopping models on
unit cells and extend models defined on a primitive cell to a
supercell according to Eq. (4).
Reciprocal-space perspective.—In Euclidean lattices,

translation symmetry constrains the form of Hamiltonian
eigenstates via Bloch’s theorem [53]. Similarly, the
automorphic Bloch theorem for hyperbolic lattices [27]
stipulates that eigenstates ψD of a translation-invariant
Hamiltonian satisfy ψD½γ−1ðzÞ� ¼ DðγÞψDðzÞ, where
γ ∈Γ is a translation, z the position coordinate, and D
an IR of Γ. By contrast with Euclidean lattices, Γ has IRs
of dimensions d > 1. Nevertheless, we can block-
diagonalize [41] the Hamiltonian in Eq. (4) into blocks
of Bloch Hamiltonians,

HðDÞ ¼
X

γ̃ ∈ΓðmÞ
hðγ̃Þ ⊗ Dðγ̃Þ; ð5Þ

where huvij ðγ̃Þ ¼ huvðηiγ̃η−1j Þ is the hopping matrix within
the supercell, and the unitary ðd × dÞ-matrix Dðγ̃Þ general-
izes the Bloch phase factor [14].
Generally, no parametrization of the IRs D is known,

limiting a direct application of the automorphic Bloch
theorem. However, the space of 1D IRs, the Abelian BZ
(ABZ), is well understood: if the cell is compactified on a
manifold of genus g, then ABZ is the 2g-dimensional
torus T2g parametrized by momenta f0 ≤ ki < 2πg2gi¼1 and
the IRs are defined on the 2g generators γi of Γ by
DkðγiÞ ¼ eiki [26–28]. While the ABZ sometimes is
representative of the bulk spectrum of flakes [10–12,23],
important features can be missed [36,37]. Studying the
non-Abelian Bloch states is therefore crucial for a complete
reciprocal-space description. Remarkably, as we explain
below, AHBT applied to a sequence of supercells provides
systematic access to non-Abelian Bloch states.
Considering the sequence of translation groups in

Eq. (3), each ΓðmÞ has a tower of d-dimensional IRs with
d ≥ 1 (Fig. 3). However, due to the subgroup relationships,
the IRs of different ΓðmÞ are not independent. First, the
restriction of a d-dimensional IR of ΓðmÞ to its subgroup
Γðmþ1Þ is a d-dimensional (possibly reducible) subduced
representation of Γðmþ1Þ. Second, any d-dimensional IR of
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ΓðmÞ implies a ðdjΓðm−1Þ=ΓðmÞjÞ-dimensional (possibly
reducible) induced representation of Γðm−1Þ [54]. Thus,
1D IRs of ΓðmÞ subduce 1D IRs of Γðmþ1Þ, but because
ABZðmþ1Þ has larger dimension than ABZðmÞ, there must be
1D IRs of Γðmþ1Þ that induce higher-dimensional IRs of
ΓðmÞ. Therefore, by studying the well-understood 1D IRs of
supercells in the sequence, we gain access to a successively
larger portion of higher-dimensional IRs of Γð1Þ. While this
scheme does not reproduce all IRs, we conjecture that it
converges to the thermodynamic limit [35] for m → ∞.
Results.—We illustrate the supercell method by comput-

ing the DOS for selected hopping models on hyperbolic
lattices: the previously studied octagon-kagome [11] and
f8; 3g-Haldane [10,12] models, and a generalization to the
f6; 4g lattice of the Benalcazar-Bernevig-Hughes (BBH)
model [55]. Each model is defined on a symmetric
primitive cell and the DOS is computed [41] by randomly
sampling ABZðmÞ in a sequence satisfying Eq. (3). We
observe rapid convergence with system size: Figs. 4(a),
4(b), and 5(b) show data for systems with only up to
32 (768), 32 (512), and 64 (1536) primitive cells (sites),
respectively. In sharp contrast, the DOS obtained from the
corresponding PBC cluster (without applying AHBT) is
extremely far from converged [41], demonstrating the
computational power of our approach.
The NN hopping model on the octagon-kagome

lattice has been analyzed in the context of flat bands
in Ref. [11]. Using real-space arguments, the authors
describe a band touching between the flat band and the
dispersive bands. In Fig. 4(a), we observe that the DOS
near the flat band is suppressed with increasing number
of primitive cells N, suggesting that the gaplessness is a

finite-size effect. This DOS suppression is consistent with
the expected behavior near a band edge. Assuming a
generic quadratic scaling of the energy dispersion with
(Abelian) momentum near the band touching, E ∝ k2, we
obtain the DOS by integrating over the 2g-dimensional
ABZ: ρðEÞ ∼ R

d2gkδðE − vk2Þ ∝ Eg−1. Since g grows
linearly withN [Eq. (1)], this explains the DOS suppression
near band edges, indicated in Fig. 1(f) and observed in all
models [Figs. 4 and 5(b)].
Next, we turn to the Haldane model on the f8; 3g

lattice [10,12] which generalizes the original Haldane
model on the honeycomb lattice [56]. We adopt the
parameter choices of Ref. [10] and show the converging
DOS in Fig. 4(b). Crucially, the characteristic DOS
suppression near the edges of all three gaps indicates that
the gaps obtained from AHBT are stable to the inclusion of
non-Abelian Bloch states and are not caused by finite-size
effects.

FIG. 3. Illustration of the spaces of d-dimensional irreducible
representations (IRs) of a sequence of translation subgroups ΓðmÞ

corresponding to supercells with NðmÞ primitive cells. The spaces
of 1D IRs are hypertori (illustrated as square and cube) with
dimension growing linearly with NðmÞ, while the spaces of
higher-dimensional IRs are more complicated (illustrated as
balls). The IRs of ΓðmÞ of dimension d subduce (blue arrow)
representations of Γðmþ1Þ of the same dimension and induce
(yellow arrow) representations of Γðm−1Þ of higher dimension
(see text).

FIG. 5. Benalcazar-Bernevig-Hughes model on the f6; 4g
lattice. (a) Model definition on the primitive cell (blue polygon)
of the f6; 4g lattice (black lines). There are four orbitals (black
dots) at each site, coupled by intersite hoppings h0 (magenta) and
intrasite hoppings h1 (green). Light blue shading of plaquettes
bounded by magenta and green lines indicates π fluxes. (b) Den-
sity of states for the indicated choices of ðh0; h1Þ. The top,
middle, and bottom subpanels correspond to the trivial, critical,
and nontrivial phases, respectively.

FIG. 4. Density of states ρðEÞ as function of energy E of (a) the
nearest-neighbor (NN) model on the octagon-kagome lattice and
(b) the Haldane model on the f8; 3g lattice with NN hopping
h1 ¼ 1, next-NN hopping h2 ¼ 1=6, flux ϕ ¼ π=2, and sublattice
mass h0 ¼ 1=3. The inset in (a) shows the depletion of ρðEÞ near
the flat band at E ¼ 2.
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Finally, motivated by the recent interest in higher-order
topological phenomena on hyperbolic flakes [16,17], we
introduce the BBHmodel on the f6; 4g lattice. Similar to its
original version on the square lattice [55], the model is
defined on a lattice with fourfold coordination, has four
orbitals per site, and exhibits π fluxes through the quadri-
lateral plaquettes [Fig. 5(a)]. The intrasite hopping h0
may differ from the intersite hopping h1. As in the
Euclidean case, this arrangement leads to a trivial phase
for jh0j ≫ jh1j with effectively independent rings centered
at lattice sites, and a nontrivial phase for jh0j ≪ jh1j with
effectively independent rings centered on the plaquettes.
The computed DOS for the two phases and the transition
are shown in Fig. 5(b). The trivial and the nontrivial phases
both exhibit an energy gap that remains stable when going
to larger supercells. The gap closes at h0=h1 ≈ 0.77,
indicating a phase transition. Interestingly, for small super-
cells the transition appears semimetallic with vanishing
DOS at E ¼ 0. However, this is a finize-size effect and the
DOS ultimately converges to a finite value, implying a
metallic transition.
Conclusions.—We have introduced a method for sys-

tematically studying non-Abelian Bloch states in hyper-
bolic lattices by applying Abelian hyperbolic band theory
to sequences of supercells, in analogy to zone folding in
solid-state physics. This provides a substantial step toward
a complete reciprocal-space description, which we believe
to be consistent with recent work [34,35] in real space.
While real-space methods scale suboptimally due to the
increasing number of noncontractible loops [37], the
combination of real-space supercells with reciprocal-space
momenta in our approach appears to mitigate this problem
and additionally provides true bulk states instead of finite-
size approximations. Our DOS results on gapless elemen-
tary nearest-neighbor models are in agreement with
previous results obtained using a different method [37],
but we additionally studied topological models exhibiting
energy gaps. Our method has three substantial advantages
over Ref. [37]: (i) it gives direct access to bulk eigenstates,
(ii) it allows for parallel computation through separating the
Hilbert space into k sectors, and (iii) there is no extra
computational cost for longer-range hoppings.
Looking ahead, we anticipate our reciprocal-space super-

cell method will facilitate advances in HBT such as
symmetry analysis [12], low-energy expansions [36], and
topological band theory, including the recently studied 2D
hyperbolic model [22] with nontrivial second Chern
number [36]. Developing systematic algorithms for gen-
erating longer sequences of Δ=ΓðmÞ quotients beyond
those in Ref. [38] would be beneficial for achieving
better convergence. Finally, we hope the implementa-
tion of our approach in a publicly available software
package [39,52,57] will accelerate further studies of hyper-
bolic quantum matter.
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