
Supplementary Material to:

Hyperbolic topological band insulators

David M. Urwyler,1 Patrick M. Lenggenhager ,1, 2, 3 Igor Boettcher ,4, 5

Ronny Thomale ,6 Titus Neupert ,1 and Tomáš Bzdušek 2, 1, ∗
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I. Geometry of the hyperbolic plane.

We adopt the Poincaré-disk representation of the hyperbolic plane, i.e., as the unit disk in the complex plane,
D = {z ∈ C | |z| < 1}, with the hyperbolic metric given by

ds2 = (2κ)2 dz dz̄

(1− zz̄)2 , (S1)

where κ is a unit of length and the bar in z̄ indicates complex conjugation. With this choice, the Gaussian curvature
equals K = −κ2. In our work, we fix κ = 1/2 (leading to curvature K = −4). With this convention,

d(z1, z2) =
1

2
arcosh

[
1 +

2 |z1 − z2|2

(1− |z1|2)(1− |z2|2)

]
(S2)

determines the geodesic distance for a pair of points z1,2 ∈ D [17].
We briefly investigate geometric aspects of a disk with radius 0 < R < 1 in the complex plane, labelled DR. Its

surface area is computed as

S(R) =

∫ 2π

0

dφ

∫ R

0

dr
r

(1− r2)2
=

πR2

1−R2
. (S3)

The hyperbolic distance from the center to the boundary of the disk is

d(0, R) =

∫ R

0

dr

(1− r2)
=

1

2
arcosh

(
1 +R2

1−R2

)
= artanhR, (S4)

and its perimeter is

p(R) =

∫ 2π

0

dφ
R

(1−R2)
=

2πR

1−R2
. (S5)

It is easily verified that p(R)/d(0, R) > 2π (for perimeter) and S(R)/d2(0, R) > π (for surface area), as expected for
a negatively curved space.
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II. Geometry of {p, q} tessellations.

We determine the distance d
{p,q}
1 of nearest-neighbor vertices of the {p, q} lattice. For that purpose, we consider

a triangle ABC where: A is the center of a regular p-sided polygon (a ‘p-gon’, for short), B is one of the p-gon’s
vertices, and C is a point that lies on the boundary of the p-gon at the middle of an edge connecting to B. Note that

the hyperbolic length of the triangle side |BC| = d
{p,q}
1 /2. The internal angles of triangle ABC at vertices A, B, and

C are identified as α = π/p, β = π/q, and γ = π/2, respectively. According to the hyperbolic law of cosines [27],

cosh

(
|BC|
κ

)
=

cosα+ cosβ cos γ

sinβ sin γ
=

cos πp
sin π

q

, (S6)

which implies d
{8,3}
1 = arcosh

(
cos π8 /sin

π
3

)
≈ 0.36352 for our choice κ = 1/2. Next, the distance |AB| = r{p,q} from

the center of the p-gon to its vertex is also determined from the law of cosines,

cosh

(
|AB|
κ

)
=

cos γ + cosα cosβ

sinα sinβ
=

1

tan π
p tan π

q

, (S7)

leading to r{8,3} = arcosh
[
1/
(

tan π
8 tan π

3

)]
/2 ≈ 0.430353.

If the center of the p-gon is placed at the center of the Poincaré disk (z = 0), then Eq. (S4) governs the complex

coordinates of the p-gon vertices, |z{p,q}B | = tanh
(
r{p,q}

)
, leading to |z{8,3}B | ≈ 0.405616. The information obtained

thus far is sufficient to find the complex coordinates {z(∅,a)}ncell
a=1 (where ncell = 16) of all sites of the {8, 3} lattice

which reside inside the Bolza cell centered at z = 0 (listed in Supplementary Table S1). For later purposes, we use
Eq. (S2) to also determine the distance of next-nearest-neighbor sites as

d
{p,q}
2 = d

(
|z{p,q}B |e2πi/p , |z{p,q}B |e−2πi/p

)
, (S8)

which leads to d
{8,3}
2 = arcosh

(
1 + 2

√
2

3

)
/2 ≈ 0.641645.

site label a 1 2 3 4
coordinate z(∅,a) 0.374741 + 0.155223 i 0.155223 + 0.374741 i −0.155223 + 0.374741 i −0.374741 + 0.155223 i

site label a 5 6 7 8
coordinate z(∅,a) −0.374741− 0.155223 i −0.155223− 0.374741 i 0.155223− 0.374741 i 0.374741− 0.155223 i

site label a 9 10 11 12
coordinate z(∅,a) 0.610313 + 0.252800 i 0.252800 + 0.610313 i −0.252800 + 0.610313 i −0.610313 + 0.252800 i

site label a 13 14 15 16
coordinate z(∅,a) −0.610313− 0.252800 i −0.252800− 0.610313 i 0.252800− 0.610313 i 0.610313− 0.252800 i

TABLE S1. Coordinates of the sites in the Bolza cell. The table lists the complex coordinates of the 16 sites of the
{8, 3} lattice which belong to the innermost Bolza cell (centered at z = 0), represented inside the Poincaré disk with radius 1.
For derivation of these values, and for the meaning of the subscript “(∅, a)”, see Methods.

The Gauss-Bonnet theorem [48] relates surface area SP of a geodesic p-sided polygon P in space of constant
curvature K to its internal angles {αj}pj=1,

p∑
j=1

(π − αj) = 2π −KSP . (S9)

The elementary cell of the {p, q} lattice is a regular geodesic p-gon with all internal angles of size α = 2π/q. It follows
from Eq. (S9) that the surface area of the elementary p-gon is

S{p,q} = π
(p− 2)(q − 2)− 4

4q
. (S10)

We obtain S{8,3} = π/6, while the area of the Bolza cell (p-gon of {8, 8} lattice) is six times larger, SBolza = π. The
ratio

ÑUC(R) =
S(R)

SBolza
=

R2

1−R2
(S11)

gives an approximate number of Bolza cells that fit into a disk with radius R in the complex plane.
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III. Reduced Kane-Mele model.

To avoid complications that arise from non-trivial spin holonomy in curved spaces, we construct the reduced Kane-
Mele (rhKM) model through the following simplification [cf. Supplementary Fig. S1]: instead of taking the negative
curvature to be constant inside the Bolza cell, we consider a continuous deformation where all the curvature becomes
concentrated at the corners of the cell (cyan dots in Supplementary Fig. S1) while the manifold becomes flat everywhere
else. Then, the Bolza cell essentially becomes a Euclidean regular octagon (black outline in Supplementary Fig. S1).
[Note that the adjacent Bolza cells (dashed frames in Supplementary Fig. S1) seemingly overlap one another, but this
is consistent with the −4π quantum of curvature at the vertex.] Then there exists a unique arrangement of the 16
sites of the {8, 3} lattice (blue frame in Supplementary Fig. S1) within the octagon such that (1) all pairs of NN sites
have the same distance, and (2) the eightfold rotation and mirror symmetries of the octagon are preserved.

The advantage of the deformed model is that the NN hopping of electrons occurs within regions of zero curvature,
allowing us to construct the Rashba SOC terms using the procedure familiar from the flat Euclidean space. Namely,
we imagine the presence of a substrate that creates a constant electric field Ez perpendicular to the 2D plane of the
system. As the spinful electron hops (within the locally flat region) between a pair of NN sites b ←[ a (represented
in Supplementary Fig. S1 with thin pink/orange/brown arrows), characterized by displacement vector rba = rb − ra
[where the vectors are decomposed into local (x, y) coordinates that run rightwards/upwards inside the illustration in
Supplementary Fig. S1], the electron perceives in its moving reference frame a magnetic field Bba ∝ rba ×E [where
E = (0, 0, Ez), and rba has been supplemented with vanishing component in the third direction]. The obtained
magnetic fields are in-plane vectors [indicated for several hopping processes in Supplementary Fig. S1 with thick
pink/orange/brown arrows], which are characterized by their direction θba. The corresponding Rashba term added to
the rhKM Hamiltonian is

Hba = iλR [cos(θba)σx + sin(θba)σy] . (S12)

By repeating the above procedure for hopping a← [ b, we find thatHab = −Hba, which is compatible with time-reversal
symmetry T = iσyK.

In the corresponding code in the enclosed data repository [60] (see also Supplementary Note XI), we label the angles
θba as one of {α(j), β(j), γ(j)}8j=1 (illustrated in pink/orange/brown in Supplementary Fig. S1); the three symbols
distinguish respectively the Rashba terms on NN bonds (1) along the inner elementary (blue) octagon, (2) directed
towards the corners of the large (black) octagon, and (3) crossing the boundary of the large octagon.

Let us emphasize that the interpretation with the non-homogeneous curvature is only adopted to construct the
Hamiltonian elements in Eq. (S12). When discussing the geometry of the system in the subsequent text, we still
assume the 16 sites of the inner Bolza cell to be located at the complex coordinates listed in Supplementary Table S1,
while keeping the Hamiltonian elements derived above.
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FIG. S1. Geometry of the reduced Kane-Mele model. (For details of the construction, see Methods). In the reduced
hyperbolic Kane-Mele model, the lattice is deformed such that all the negative curvature is concentrated at the corners (cyan
dots) of the unit cell (the Bolza cell; deformed into the black octagon). As a consequence, space is flat everywhere except at
those points (octagon corners,) and the neighbouring unit cells (dashed black octagons) seem to overlap in our representation of
the lattice. The unit cell contains 16 sites (blue dots labelled by red numbers). Assuming an electric field due to the substrate
pointing out of the plane, hopping between two sites (pink, orange and brown thin arrows) leads to an effective magnetic field
pointing in the direction of the corresponding thick arrow (of the same color). This direction is parametrized by an angle θ(j),
where θ = α, β, γ depending on whether the hopping is on the inner ring, in the radial direction, or across different Bolza unit
cells, respectively, and j ∈ {1, . . . , 8} enumerates those nearest-neighbour bonds. Assuming first that we set the alternating
on-site potential to M = 0, the constructed model preserves time-reversal symmetry T , the eightfold rotation symmetry with
respect to the center of the Bolza cell (corresponding to symmetry ‘R’ in the Supplementary Material to Ref. [9]), the mirror
symmetry with respect to lines connecting antipodal corners of the unit cell (symmetry ‘S’ in Ref. [9]), and the mirror symmetry
with respect to lines connecting centers of antipodal edges of the unit cell (composition of R and S). However, the model breaks
the threefold rotation symmetry with respect to any site of the {8, 3} lattice (symmetry ‘U ’ in Ref. [9]), as is apparent from
the varying geometrical distortions of the six elementary (blue) octagons in the Bolza unit cell. The on-site ±M term further
breaks R (but not T and S) symmetry. [Note that in the main text we use symbol ‘R’ to indicate a (π/2)-rotation around the
center of the Bolza cell, whereas the same symbol is used by Ref. [9] to indicate a (π/4)-rotation around the same point.]
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IV. Hyperbolic Bloch Hamiltonian.

To obtain the hyperbolic Bloch Hamiltonian H(k) from tight-binding Hamiltonian H in position space, we replace
the infinite lattice by a single Bolza cell with identified antipodal boundaries [pairs of colored edges in Fig. 1(a)] [9]. To
implement the twisted boundary conditions, tunnelling amplitudes (t) for hopping process that cross edges displaced
by γ±1

j are multiplied by phase factors e±ikj . Since there are four phases {kj}4j=1 ≡ k, it follows that H(k) is defined

over a 4D BZ. For models on the {8, 3} lattice, the presence of ncell=16 sites per Bolza cell implies that H(k) is
a matrix of dimensions DBloch=ncell (DBloch = 2ncell) in the absence (presence) of the spin degree of freedom [49].
The Bloch Hamiltonians for the studied models are constructed in Supplementary Note XI), and made available as
Mathematica notebooks in the data repository [60].

We further consider the generation of density from HBT. Given a hyperbolic Bloch Hamiltonian, we perform random
sampling of Nk momenta over the 4D hypercubic BZ, ∀j ∈ {1, 2, 3, 4} : kj ∈ [−π, π]. The collected list of eigenvalues

{εj}NkDBloch
j=1 is converted into a continuous DoS function via

ρHBT(E) =
1

NkDBloch

NkDBloch∑
j=1

fη(E − εj) (S13)

where fη(ε) = 1
η
√

2π
exp

[
− ε2

2η2

]
is a Gaussian smearing function. The factor in front of the summation symbol is

chosen such that ρHBT(E) integrates to 1. We use η = 0.063 and Nk = 2× 104 throughout the manuscript.
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V. Flake Hamiltonian in position space.

Two inputs are used to algorithmically construct the lattice Hamiltonian Hflake on a circular-flake in position space:

the hyperbolic Bloch Hamiltonian H(k), and the target number ÑUC of unit cells. The Bloch Hamiltonian has
components H(k) = {hab(k)}ncell

a,b=1 For the models presented in this work, one finds that hab(k) = tabe
ik·%ab with a

unique value of the 4-component vector %ab and of the hopping amplitude tab for each a, b ∈ {1, . . . , ncell}. (Note that
here we treat tab as a single complex number for spinless models, and as a complex-valued 2 × 2 matrix for spinful
models.) The algorithm, which is implemented in the data repository [60], proceeds in the following steps.

First, we invert Eq. (S11) to determine an estimated radius R(ÑUC) =
[
ÑUC/

(
1 + ÑUC

)]1/2
of a disk in the

complex plane that contains ÑUC Bolza cells. We center one of the Bolza cells at z = 0, and we use the known
action ργj of generators γj on the complex coordinates in D [Eq. (45) in Ref. 13] to identify the centers of all cells of

the {8, 8} (Bolza) lattice that lie within the distance R(ÑUC) from the origin. (Note that the centers of the Bolza

cells do not coincide with any site of the {8, 3} lattice.) This results in a list of Bolza cells, Lcells = {w`}NUC

`=1 ; here,
each w` is a sequence of generators and their inverses (a “word”) that translates z = 0 to ρw`

(0) = zj within the
disk of radius R (i.e., |zj | < R), and NUC is the total number of selected Bolza cells. The words w` are elements
of the hyperbolic translation group, and act on complex coordinates inside the Poincaré disk by ρw`

, which is the
corresponding composition of ργj (and of their inverses). The word ‘∅’ of length zero (which corresponds to the
identity of the translation group) is always present in Lcells; it encodes the Bolza cell centered at z = 0. We then

apply Lcells to generate a list of sites of the {8, 3} lattice, L̃sites = {(w`, a)}, where 1 ≤ a ≤ ncell labels the individual
sites within each Bolza cell w` ∈ Lcells. The complex coordinates of the sites are obtained as z(w`,a) = ρw`

(z(∅,a)).

We next use the list L̃sites and the amplitudes tab to construct the real-space Hamiltonian H̃flake. The Hamiltonian

has ñflake × ñflake components, where ñflake = ncellNUC is the length of list L̃sites. Since the presently considered
tight-binding Hamiltonians contain only NN and NNN terms, we run the following routine. For each pair (x, y) with

x = (w`, a) and y = (wm, b) in L̃sites, compute the distance d(zx, zy). If the distance is equal to the NN distance d
{8,3}
1

or to the NNN distance d
{8,3}
2 , we set

(
H̃flake

)
x,y

= tab. In the very last step, we smooth the boundary of the system

by identifying sites that have only a single NN. We drop the corresponding rows and columns of H̃flake, which results
in the final Hamiltonian Hflake that has a slightly decreased number of components nflake × nflake (we similarly define
the corresponding shortened list of sites Lsites of length nflake). Note that for spinful models, the counted Hamiltonian
components are 2 × 2 blocks, i.e., the actual Hamiltonian dimension is Dflake = nflake (Dflake = 2nflake) for spinless
(spinful) models.
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VI. Considered system sizes in the flake geometry.

The assumed system size varies between the figures. We encode the size for each calculation with the triplet

“size = (ÑUC, NUC, nflake)” (where NUC and nflake are selected automatically by the the above-outlined algorithm

upon inputting ÑUC).
For the hH model, the sizes are set up as follows:

• Fig. 1(b,c) and Fig. 2(c): size = (700, 761, 8496),

• Supplementary Fig. S2(a,c) and Supplementary Fig. S4(a): size = (400, 409, 4520),

• Fig. 4(a) and Supplementary Fig. S7(b): size = (500, 569, 6344 7→ 896),

• Fig. 4(b,c) and Supplementary Fig. S4(b,c): size = (200, 169, 1864).

For the rhKM model, we chose the following sizes:

• Supplementary Fig. S2(a,d) and Supplementary Fig. S3: size = (200, 169, 1864),

• Fig. 3(b) and Fig. 5: size = (300, 297, 3304),

• Supplementary Fig. S7(b): size = (500, 569, 6344 7→ 896).

Note that in the calculations leading to Fig. 4(a) and to Supplementary Fig. S7(a,b), an additional level of removing

sites at the boundary is applied, namely, starting with the list L̃sites, we remove all sites with less than three nearest
neighbors. Thus, instead of arriving at a system with 6344 sites, we obtain a much smaller system with 896 sites,
cf. Supplementary Note XIII.
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VII. Bulk density of states and integrated boundary density of states for the flake Hamiltonian.

Given a lattice HamiltonianHflake on a circular flake, we perform ED to find its eigensystem Λflake =
{

(Ej , |φj〉)
}Dflake

j=1
,

where |φj〉 is an eigenvector with eigenvalue Ej . Each eigenstate is a list of amplitudes, namely |φj〉 = {φj,x}x∈Lsites

for spinless models (|φj〉 = {φj,x,σ}x∈Lsites,σ∈{↑,↓} for spinful models). For each state we define the bulk weight $j as
the probability that the particle in such a state is located on the innermost unit cell (i.e., sites with w` = ∅),

$bulk
j =

16∑
a=1

∣∣φj,(∅,a)

∣∣2 and $bulk
j =

16∑
a=1

∑
σ∈{↑,↓}

∣∣φj,(∅,a),σ

∣∣2 (S14)

for spinless and spinful models, respectively. We then convert the information about the eigenvalues and eigenvectors
into a continuous DoS function via

ρED
bulk(E) =

1

DBloch

Dflake∑
j=1

$bulk
j fη(E − Ej) (S15)

with the smearing function fη defined below Eq. (S13). The prefactor 1/DBloch guarantees that ρED
bulk(E) integrates

to 1. To achieve a simple comparison with the HBT data, we use η = 0.063 throughout the manuscript.
We next define the integrated DoS at the boundary in analogy with Eq. (S15), where the only difference is the

replacement $bulk
j 7→ $bound.

j , with

$bound.
j =

∑
x∈Lbound.

|φj,x|2 and $bound.
j =

∑
x∈Lbound.

∑
σ∈{↑,↓}

|φj,x,σ|2 (S16)

for spinfless and spinful models, respectively, where Lbound. is a sublist of Lsites that selects sites with two nearest
neighbors.
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VIII. Real-space invariants.

For the energy gap at chemical potential µ, we compute the real-space Chern number using the formula from Ref. 39,

CRS(µ) = 12πi
∑
j∈A

∑
k∈B

∑
`∈C

(
PµjkPµk`P

µ
`j − Pµj`P

µ
`kPµkj

)
(S17)

where Pµ is the projector onto the subspace of occupied single-particle states at chemical potential µ, and A,B,C
are three regions in the bulk of the systems that (i) do not extend all the way to the boundary, and which (ii) are
arranged counter-clockwise around the center of the system [cf. Fig. S2(b)].

In the presence of time-reversal symmetry, we compute the real-space spin Chern number νRS following the ideas
of Refs. 41 and 42. Namely, we first construct the projected spin operator Pµz = PµσzPµ. Next, we perform spectral
decomposition of the projected spin operator into eigenstates (|ςj〉) and eigenvalues (Sj). As long as the spin-mixing
Rashba term is weak, the eigenvalues Sj remain close to ±1, allowing us to define the index sets S±; in addition,
there are unphysical zero eigenvalues, which correspond to the part of the Hilbert space that is projected out by Pµ.
This allows us to define projectors P± =

∑
j∈S±

|ςj〉〈ςj |. The integer-valued real-space spin Chern number is then

obtained as

νRS(µ) =
1

2

[
ν+

RS(µ)− ν−RS(µ)
]
, (S18)

where ν±RS(µ) are computed per Eq. (S17) with replaced Pµ 7→ Pµ±. Note that for strong SOC, the eigenstates of Pz
no longer exhibit a clear spectral gap between the two sets S±, and the formula in Eq. (S18) ceases to be applicable.
We verified that this issue does not arise for our selected model parameters.

FIG. S2. Topological invariants. a. Summary of topological invariants for the hyperbolic Haldane and reduced hyperbolic
KM models for their respective three energy gaps, labelled by filling fraction f and chemical potential µ. We show both
momentum-space band invariants (subscripts a and b) and real-space topological markers (subscript RS) b. Regions A,B,C
involved in the computation of the real-space invariants. c, d. Convergence of the computed real-space Chern number (c) and
real-space spin Chern number (d) for the three energy gaps (labelled by µ) upon increasing the size of the regions A,B,C. Here
NA∪B∪C is the total number of sites in the three regions.
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Haldane/ Kane-Mele

NA∪B∪C 16 32 64 80 96 120 152 168 184 216
CRS (µ = ±1.3) -0.661 -0.751 -0.904 -0.921 -0.924 -0.934 -0.944 -0.953 -0.962 -0.972
νRS (µ = −1.3) -0.638 -0.723 -0.876 -0.895 -0.903 -0.916 -0.926 -0.937 -0.948 -0.955
νRS (µ = +1.3) -0.654 -0.747 -0.902 -0.915 -0.918 -0.929 -0.937 -0.945 -0.955 -0.964

NA∪B∪C 240 272 288 368 400 448 496 544 624
CRS (µ = ±1.3) -0.973 -0.976 -0.976 -0.979 -0.980 -0.981 -0.982 -0.984 -0.986
νRS (µ = −1.3) -0.957 -0.963 -0.963 -0.966 -0.966 -0.968 -0.969 -0.971 -0.970
νRS (µ = +1.3) -0.965 -0.967 -0.968 -0.969 -0.969 -0.970 -0.971 -0.971 -0.970

TABLE S2. Tabulated values of data in Fig. S2(c,d). The values indicate the convergence of the topological markers in
positions space to values ±1 as the number of sites NA∪B∪C in the summation region is increased.
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[4]

IX. Gaussian projector operator.

Given the eigensystem of a flake Hamiltonian, Λflake = {(Ej , |φj〉)}Dflake
j=1 , we construct for an energy range [µ −

σ, µ+ σ] within a topological energy gap the operator

P(µ,σ) =

Dflake∑
j=1

exp

[
− (Ej − µ)2

2σ2

]
|φj〉〈φj |. (S19)

Note that P(µ,σ) is not a projector in the traditional sense, since its eigenvalues are arbitrary numbers in range [0, 1].
The idea behind the exponential weight factor in Eq. (S19) is that, per the approximately linear dispersion of the edge
state visible in Fig. 4(a), we construct a Gaussian function in angular momentum `. Therefore, the wave function
P(µ,σ) |ϕsite〉 has approximately Gaussian coefficients in its decomposition to angular momenta, implying it constitutes
a Gaussian wave packet in the angular coordinate α.

FIG. S3. Propagation of edge states in the rhKM model. We compute and plot the propagation of helical edge states
around the boundary of a flake supporting the rhKM model. The time evolution is computed according to the description in
section ‘Bulk-boundary correspondence’ of the main text, and we use the Gaussian projector P(µ,σ) with (µ, σ) = (1.3, 0.025).
The indicated time τ is counted in multiples of 1/t1. The initial single-site localized state |ϕsite〉 was chosen to have the form
1√
2
(1, 1)> in the spin degree of freedom. We observe that time-evolution splits P(µ,σ)|ϕsite〉 into a pair of counter-propagating

wave packets that during the time evolution pass through one another without scattering.
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X. Models of disorder.

For the hH Hamiltonian Hflake
hH , we consider the addition of random on-site potential, i.e., for each site a we add to(

Hflake
hH

)
aa

a random value drawn from the box distribution bounded by ±Wmax.

For the rhKM Hamiltonian Hflake
hH , we consider the addition of a random spin-dependent term to each pair (a, b)

of NN and NNN sites. We specifically consider terms that are off-diagonal in the spin-degree of freedom; namely, for
each pair (a, b) we draw random values αx,y ∈ [−Wmax,+Wmax], and increase the 2×2 Hamiltonian blocks as follows:

TR-symmetric disorder :
(
Hflake

rhKM

)
ab

+= i(αxσx + αyσy), (S20)

TR-breaking disorder :
(
Hflake

rhKM

)
ab

+= (αxσx + αyσy), (S21)

with
(
Hflake

rhKM

)
ba

=
(
Hflake

rhKM

)†
ba

for both cases. The disorder in Eq. (S20) is interpretable as random Rashba SOC,

while the one in Eq. (S21) corresponds to random in-plane magnetic fields along the trajectory connecting sites (a, b).
The localization of a normalized eigenstate |φj〉 is quantified by the inverse participation ratio, defined for spinless

and spinful systems as

IPRj =

nflake∑
a=1

|φj,a|4 resp. IPRj =

nflake∑
a=1

(
|φj,a,↑|2 + |φj,a,↓|2

)2

. (S22)

One easily verifies that if |φj〉 were homogeneously distributed over N sites, then IPRj = 1/N . This implies the
interpretation that an eigenstate characterized by IPRj as being distributed over approximately 1/IPRj sites.

FIG. S4. Robustness against Anderson disorder in the hyperbolic Haldane model. The disorder chosen for the
hyperbolic Haldane model corresponds to the addition of a random on-site potential drawn from a box distribution in range
[−Wmax,Wmax]. a, IPR of the individual eigenstates for various choices of disorder strength Wmax. Note that the domain
of low values of IPR has reduced to a narrower range of energies for the green data (Wmax = 0.4), indicating the shrinking
of the bulk energy gap; nevertheless, the robustness of edge states with low IPR is manifest. b–c, Propagation of chiral
edge states in disordered hH model. The calculation is analogous to Fig. 4(b,c) of the main text, but here we assume the
addition of a strong random on-site potential with disorder strength Wmax = 0.4 (green in panel a). The wave packet continues
to propagate around the flake boundary with nearly uniform angular velocity. The parameters of the Gaussian projector
are (µ, σ) = (1.3, 0.025), and the data in red/yellow/green/blue color consecutively correspond to the wave packet at times
τ = (0, 240, 480, 720), (µ, σ) = (1.3, 0.025).
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XI. Hyperbolic Bloch Hamiltonians of the studied models

Since the hyperbolic Bloch Hamiltonians H(k) studied in this work are 16×16 and 32×32 matrices, we do not write
them explicitly. Instead, we include here the Mathematica code that generates these Hamiltonians when compiled
(the corresponding Mathematica notebooks are included in the data repository [60]).

We first specify the following:

$Assumptions = {
k1 \[Element] Reals, k2 \[Element] Reals,
k3 \[Element] Reals, k4 \[Element] Reals,
t1 \[Element] Reals, t2 \[Element] Reals,
flux \[Element] Reals, M \[Element] Reals, LR \[Element] Reals
};

kList = {k1, k2, k3, k4, −k1, −k2, −k3, −k4};
The hyperbolic Bloch Hamiltonian of the NN model on the {8, 3} lattice is obtained as Hnn with the following code:

Hnn = ConstantArray[0, {16, 16}];

For[a = 1, a < 9, a++,
Hnn[[Mod[a, 8] + 1, a]] = t1;
Hnn[[a + 8, a]] = t1;
Hnn[[8 + Mod[a + 4, 8] + 1, 8 + a]] = t1∗Exp[−I∗kList[[a]]];
];

Hnn = FullSimplify[Hnn + ConjugateTranspose[Hnn]];

After including the mass term, we obtain the hyperbolic Bloch Hamiltonian H{8,3}(k) as H83 with the following
code:

Hmass = ConstantArray[0, {16, 16}];
For[a = 1, a < 9, a++,

Hmass[[a, a]] += M∗Power[−1, a + 1];
Hmass[[a + 8, a + 8]] += −M∗Power[−1, a + 1];
];

H83 = Hnn + Hmass;

To obtain the hyperbolic Bloch Hamiltonian HhH(k) for the hyperbolic Haldane model, encoded as Hh in the code
below, we further define a matrix Hflux of NNN terms.

Hflux = ConstantArray[0, {16, 16}];

For[a = 1, a < 9, a++,
Hflux[[Mod[a + 1, 8] + 1, a]] = t2∗f;

Hflux[[a, 8 + Mod[a, 8] + 1]] = t2∗f;
Hflux[[8 + Mod[a − 2, 8] + 1, a]] = t2∗f;

Hflux[[8 + Mod[a + 4, 8] + 1, a]] = t2∗f∗Exp[−I∗kList[[a]]];
Hflux[[a, 8 + Mod[a + 2, 8] + 1]] =
t2∗f∗Exp[I∗kList[[Mod[a − 2, 8] + 1]]];

Hflux[[8 + Mod[a + 2, 8] + 1, 8 + Mod[a + 4, 8] + 1]] =
t2∗f∗Exp[I∗(kList[[a]] − kList[[Mod[a − 2, 8] + 1]])];

];

Hflux = FullSimplify[Hflux + ConjugateTranspose[Hflux]];

Hh = FullSimplify[H83 + Hflux /. f \[Rule] Exp[I∗flux]];
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We next proceed to construct the hyperbolic Bloch Hamiltonian HrhKM(k) of the reduced hyperbolic Kane-Mele
model. To that end, we first double the Haldane model into a ‘quantum spin Hall’ Hamiltonian Hqsh:

Hqsh = ArrayFlatten[
{
{((H83 + Hflux) /. f \[Rule] Exp[I∗flux]), 0},
{0, ((H83 + Hflux) /. f \[Rule] Exp[\[Minus]I∗flux])}
}

];

The spin-orbit-coupled rhKM model is finally obtained as Hhkm with the following code:

Hsoc = ConstantArray[0, {16, 16}];

For[a = 1, a < 9, a++,
alpha = −Pi/2 − (a − 1)∗(2 Pi/8);
Hsoc[[Mod[a, 8] + 1, a]] = I∗(Cos[alpha]∗PauliMatrix[1] + Sin[alpha]∗PauliMatrix[2]);
Hsoc[[a, Mod[a, 8] + 1]] = −I∗(Cos[alpha]∗PauliMatrix[1] + Sin[alpha]∗PauliMatrix[2]);

beta = Pi/8 − (a − 1)∗(2 Pi/8);
Hsoc[[a + 8, a]] = I∗(Cos[beta]∗PauliMatrix[1] + Sin[beta]∗PauliMatrix[2]);
Hsoc[[a, a + 8]] = −I∗(Cos[beta]∗PauliMatrix[1] + Sin[beta]∗PauliMatrix[2]);

gamma = 0 − (a − 1)∗(2 Pi/8);
Hsoc[[8 + Mod[a + 4, 8] + 1, 8 + a]] =
I∗(Cos[gamma]∗PauliMatrix[1] + Sin[gamma]∗PauliMatrix[2])∗Exp[−I∗kList[[a]]];
Hsoc[[8 + a, 8 + Mod[a + 4, 8] + 1]] =
−I∗(Cos[gamma]∗PauliMatrix[1] + Sin[gamma]∗PauliMatrix[2])∗Exp[I∗kList[[a]]];
];

For[a = 1, a < 17, a++,
For[b = 1, b < 17, b++,
If[Hsoc[[a, b]] == 0,

Hsoc[[a, b]] = ConstantArray[0, {2, 2}];
];

];
];

Hsoc = ArrayFlatten@Transpose[Hsoc, {3, 4, 1, 2}];

Hhkm = (Hqsh /. flux \[Rule] Pi/2) + LR∗Hsoc;
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XII. Wilson-loop extraction of topological band invariants

We extract topological band invariants of hyperbolic Bloch Hamiltonians on two-dimensional planes in the 4D BZ
using the Wilson-loop technique [50, 51]. The utilized code is shared in the data repository [60].

First, we determine the Chern numbers Ca, Cb, Cc ∈ Z of the hyperbolic Haldane model HhH(k) by computing the
Wilson loop in the k2-, k3- resp. k4-direction (labelled as W2, W3, resp. W4) as a function of k1. The results of our
analysis are shown in Fig. S5, and tabulated in Fig. S2(a).

FIG. S5. Wilson-loop spectra for the hH model. Rows represent the three energy gaps of the model at the indicated
filling fractions f , while columns correspond to the three pairs of planes that we do not relate by symmetry in the discussion
in the main text. The Wilson spectra reveal the values of the Chern numbers tabulated in Fig. S2(a). Note that the number
of plotted Wilson bands matches the number of filled energy bands (numerators of f); however, some of the bands are not
resolved since they coincide close to zero value.
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We next determine the Kane-Mele invariants νa, νb, νc ∈ Z2 for the reduced hyperbolic Kane-Mele model HrhKM(k)
by computing the Wilson loop in the k2-, k3- resp. k4-direction (labelled again as W2, W3, resp. W4) as a function of
k1. The results of our analysis are shown in Fig. S6.

FIG. S6. Wilson-loop spectra for the rhKM model. Rows represent the three energy gaps of the model at the indicated
filling fractions f , while columns correspond to the three pairs of planes that we do not relate by symmetry in the discussion
in the main text. The Wilson spectra reveal the values of the Kane-Mele invariants tabulated in Fig. S2(a). The number of
plotted Wilson bands matches the number of filled energy bands (numerators of f); however, some of the bands are not resolved
since they coincide close to zero value.
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XIII. Extraction of the edge mode dispersion

In this supplementary note we describe a method we developed to determine the angular momentum of a given
eigenstate of the Hamiltonian defined on a hyperbolic lattice. This method is used to generate the data for the
dispersion of the chiral edge state of the hH model plotted in Fig. 4a of the main text.
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FIG. S7. Angular momentum dispersion of edge modes. Contribution φ` [cf. Eq. (S39) in Supplementary Note XIII] of
different angular momenta to the states lying in the upper energy gap for a, the Haldane model, and b, the reduced Kane-Mele
model defined on the flake of the {8, 3} lattice shown in Supplementary Fig. S9. The horizontal grey lines indicate the band
edges below and above the gap, and were determined from the density of states ρED

bulk for the here considered system size.
a, In the Haldane model, there is a single (chiral) propagating edge mode with a very sharp angular momentum dispersion
lying exactly in the gap. b, In the case of the Kane-Mele model, we find in the gap two (helical) counter-propagating edge
modes. The two edge-state branches are characterized by opposite sign of the angular momentum (`) as well as of the angular
momentum dispersion (dE/d`).

The method relies on a decomposition of functions defined on the disk DR = {z ∈ C | |z| ≤ R} of radius 0 < R < 1
with the hyperbolic metric given by Eq. (S1) into eigenmodes of the Laplace-Beltrami operator

∆ =
(

1− |z|2
)2
(
∂2

∂x2
+

∂2

∂y2

)
, (S23)

where z = x+ iy ∈ C. The solutions to the Dirichlet problem

(∆ + λ)u(z) = 0, u(z)|(z)∈∂DR
= 0 (S24)

form an orthonormal basis for functions on DR and they are given [6, 13] by

un,`(z) =
gkn,`(|z|)
‖gkn,`‖

ei` arg(z), (S25)

where

gk,`(r) =


P 0

1
2 (−1+ik)

(
1+r2

1−r2

)
, ` = 0(∏`−1

m=0

(
− 1

2 −m+ ik
))−1

P `1
2 (−1+ik)

(
1+r2

1−r2

)
, ` > 0

(−1)`gk,|`|(r), ` < 0

, (S26)

P `q (s) are the associated Legendre functions, ‖g‖ =
√
〈g, g〉 is the norm induced by the inner product on DR

〈v, w〉 =

∫
|z|≤R

d2z

(1− |z|2)2
v(z)

∗
w(z), (S27)
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kn,` is the n-th zero of

k 7→ P `1
2 (−1+ik)

(
1 +R2

1−R2

)
, (S28)

and ` ∈ Z. The solutions to Eq. (S28) correspond to zeroes of gk,`(R), cf. Supplementary Fig. S8a.
For the flake of the {8, 3} lattice shown in Supplementary Fig. S9 that we define our models on, all the eigenvalues

λn,` are shown in Supplementary Fig. S8b as functions of n and ` and the five solutions to Eq. (S24) with smallest
λn,` are plotted in the top row of Supplementary Fig. S10.
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FIG. S8. Eigenvalues of the Laplace-Beltrami operator. Illustration of how to find kn,` and the resulting eigenvalues
λn,` with 896 sites of the {8, 3} lattice shown in Fig. S9a. a, The function k 7→ gk,`(R) for ` = 0 (blue) and ` = 1 (orange) and
with R = 0.991437 chosen as illustrated in Fig. S9b. The first few zeroes kn,` are marked by vertical lines. b, The first 896
eigenvalues λn,` as a function of |`| with the different branches corresponding to different n.

A function v(z) on DR can then be decomposed into the eigenfunctions un,`(z):

v(z) =
∑
n>0

∑
`∈Z

vn,`un,`(z), (S29a)

vn` = 〈un,`, v〉 =

∫
|z|≤R

d2z

(1− |z|2)2
un,`(z)

∗
v(z). (S29b)

In Eq. (S25) we recognize that ` can be interpreted as angular momentum. If v(z) is normalizable, ‖v‖ <∞,

v` =
∑
n>0

|vn,`|2 (S30)

gives the contributions of different values of angular momentum ` to the function v(z).
This can be used to find the contributions of angular momenta to quantities (vectors) defined on the lattice, e.g., the

eigenstates of the Hamiltonian Hflake
{8,3} defined on a flake of the {8, 3} lattice. A normalized vector |φ〉 = (φ1, . . . , φN )>

defined on the lattice given by the finite set of sites {zi}Ni=1 induces the following function on DR

φ(α)(z) =

N∑
i=1

φiη
(α)
i (z), (S31)

where ηi(z) is non-vanishing only in the Wigner-Seitz cell of the lattice site i (the Wigner-Seitz cell is defined as the
region of DR that has shorter hyperbolic distance to site i than to any other site of the flake), and satisfies∫

|z|≤R

d2z

(1− |z|2)2

∣∣∣η(α)
i (r)

∣∣∣2 = 1. (S32)

Various choices for ηi(z) are possible. Here we consider two options:
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FIG. S9. Flake of the {8, 3} lattice used to extract the edge mode dispersion. a, The flake with 896 sites with
nearest-neighbour bonds (black lines). Some of the Wigner-Seitz unit cells are indicated by black dashed lines. The red circle
bounds the disk of radius R which determines the Dirichlet boundary conditions for u(z). b, The radius R is defined as the
maximal radius r such that additional sites of the infinite hyperbolic lattice (gray points) not included in the flake (whose sites
sites are shown with black points) lie outside the disk Dr.

Option (1): η
(1)
i (z) = Θi(z)/

√
AWS, and

Option (2): η
(2)
i (z) =

√
AWS(1− |zi|2)2δ(2)(z − zi).

In both of the above, AWS is the (hyperbolic) area of a Wigner-Seitz unit cell (cf. Fig. S9); and Θi(z) in the first
expression is a “region function” that is equal to one inside (and to zero outside) the Wigner-Seitz cell of site i. For
both of the above options, 〈

η
(α)
i , φ(α)

〉
=
∑
j

φj

∫
|z|≤R

d2z

(1− |z|2)2

[
η

(α)
i (z)

]∗
η

(α)
j (z) = φi (S33)

allows us get back the ith component of vector |φ〉.
The extension φ(α)(z) of |φ〉 to the full disk DR allows us to apply the decomposition into eigenmodes of the

Laplace-Beltrami operator given in Eq. (S29) to the vector |φ〉:

φ
(α)
n,` =

〈
un,`, φ

(α)
〉

=
∑
i

φi

〈
un,`, η

(α)
i

〉
. (S34)

For choice (1) this becomes

φ
(1)
n,` =

√
AWS

∑
i

φiun,`(zi)
∗

(S35)

where un,`(zi) is the average over the ith Wigner-Seitz cell WSi:

un,`(zi) =

∫
z∈WSi

∫
|z|≤R

d2z

(1− |z|2)2
un,`(z). (S36)

Choice (2) results in a much simpler expression only involving un,`(z) evaluated at the lattice sites:

φ
(2)
n,` =

√
AWS

∑
i

φiun,`(zi)
∗
. (S37)
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For the two choices we define

(1): |ψ(1)
n,`〉 =

√
AWS(un,`(z1), . . . , un,`(zN ))>, resp.

(2): |ψ(2)
n,`〉 =

√
AWS(un,`(z1), . . . , un,`(zN ))>,

allowing us to express the coefficients φn,` compactly as

φ
(α)
n,` =

〈
ψ

(α)
n,`

∣∣∣φ〉 . (S38)

Some examples of |ψ(1)
n,`〉 are shown in the bottom row of the Supplementary Fig. S10. Finally, we define the angular-

momentum components

φ
(α)
` =

∑
n>0

∣∣∣φ(α)
n,`

∣∣∣2 . (S39)

FIG. S10. Eigenmodes of the Laplace-Beltrami operator. Examples of eigenmodes un,`(z) (top row) of the Laplace-
Beltrami operator with Dirichlet boundary conditions for |z| = R = 0.991437. The bottom row shows the discretized versions

|ψ(2)
n,`〉, i.e., un,` evaluated at the lattice sites of the flake shown in Supplementary Fig. S9. In both rows the absolute value is

encoded in the intensity and the argument in the color (see legend). The header gives the quantum numbers (n, `) for each
eigenmode.

Note that the discretized approximations |ψ(α)
n,` 〉 of the Laplace-Beltrami eigenmodes un,`(z) are neither orthogonal

nor normalized, and therefore subsets with N elements generally do not form a basis of CN . In general, a large
number of |ψn,`〉 are required to characterize an arbitrary state |φ〉. Owing to the choice of t1 = 1 > 0, eigenstates
|φ〉 of the flake Hamiltonian, Hflake

{8,3} |φ〉 = E |φ〉, with energy E lying towards the upper end of the energy spectrum

have larger contributions φn,` associated to small values of λn,`, i.e., slowly oscillating eigenfunctions un,`(z). It is
therefore easier to determine φ` for those states, while states with smaller energy E are highly oscillatory and require
larger |`| as well as n.

In practice, our algorithm for calculating the φ` for all states |φ〉 is set up as follows. To avoid a computationally
heavy numerical integration of the individual Wigner-Seitz cell, we choose option (2) discussed above. The vectors

{ |ψ(2)
n,`〉}n>0,`∈Z only depend on the finite lattice, i.e., the flake, and not the Hamiltonian matrix defined on it. Given

a flake of the {8, 3} lattice (and a compatible choice of bounding radius R), a subset of { |ψn,`〉}n>0,`∈Z can be
precomputed and stored. To do that, we first need to find solutions of Eq. (S28) for the chosen range of angular
momentum ` ∈ [`min, `max]; this is done by a root search in a predefined interval k ∈ (0, kmax). Note that there is some
freedom in choosing R due to the discretization; it must lie beyond the outermost site appearing on our disk-shaped
flake (i.e., inside the restricted list Lsites), but closer than the nearest site of the {8, 3} lattice not included in the flake

(i.e., not appearing in the slightly larger list L̃sites). For the system size considered here, we choose R = 0.991437.
The resulting values kn,` allow us to define the corresponding eigenfunctions un,`(z) via Eq. (S25) and consequently



22

compute |ψ(2)
n,`〉. Later, the overlaps φ

(2)
n,` = 〈ψ(2)

n,`|φ〉 can be efficiently computed for all |φ〉, resulting in the energy
vs. angular momentum spectrum.

The results of applying the outlined algorithm to states in (and near) the upper energy gap of the hH model and of
the rhKM model are shown, respectively, in the two panels of Fig. S7. Let us remark that in the main text Fig. 4(a)
we plot essentially the same data as in Supplementary Fig. S7(a). However, as shown in the version of the plot in the
supplementary figure, the extracted data are very sharp (one pixel-in-` wide), which would make them hard to see in
the small figure panel in the main text. For this reason, we opt in the main text to coarse grain the signal in angular
momentum over (2nmax + 1) values of angular momenta as

φ
(α)
` 7→

+nmax∑
a=−nmax

φ
(α)
`+a. (S40)

to improve the visibility. The result of this coarse graining for nmax ∈ {0, 1, 2} (i.e., over 1, 3, resp. 5 adjacent values
of `) is shown in Supplementary Fig. S11. The data in main text Fig. 4(a) correspond to nmax = 2.
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FIG. S11. Smearing of chiral edge states of the hH model. a, The extracted values of φ` for the chiral edge states
of the hH model. b, The result of smearing the values shown in panel a according to Eq. (S40) with nmax = 1 and c with
nmax = 2.
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XIV. Group velocity of the chiral edge states in hyperbolic Haldane model

In this supplementary note, we show how the data in Fig. 4(a) and in Fig. 4(b) provide two independent ways
to extract the velocity with which the wave packets of topological edge states in the hH model propagate around
the flake boundary, allowing for a consistency check of the numerical modelling. We remark that the two figure
panels are generated for different system sizes; therefore, one should be careful to compare absolute (rather than
angular) velocities. Furthermore, the focus is not on quantitative rigor but on qualitative comparison; therefore, we
approximate most of the discussed quantities to two significant digits.

We begin with Fig. 4(a), which is computed for a system with nsites = 896, such that the number of Bolza cells is
approximately NUC = 896/16 = 56. From Eq. (S11) (where we approximate the numerator on the right-hand side
by 1) we obtain for the radius R that 1− R2 ≈ 1/56. Next, from Eq. (S5) we obtain the perimeter p ≈ 112π ≈ 350.
We further estimate the angular group velocity as ωgroup = ∆E/∆`. We read from the data in Fig. 4(a) that across
the energy gap ∆E ≈ 0.83 and ∆` ≈ 65, leading to ωgroup ≈ 0.0128. Multiplying by the perimeter, we obtain the
absolute group velocity vgroup ≈ ωgroupp ≈ 4.5. (Here, units of length are such that the Gaussian curvature is K = −4,
cf. Methods. Time is measured in units of ~/t1; in numerical modelling we set both ~ and t1 to 1.)

On the other hand, the data in Fig. 4(b) are obtained for a system with nsites = 1864. Repeating analogous geometric
considerations as above, we find that NUC = 116.5, and 1−R2 ≈ 2/233. The perimeter of the corresponding system
is estimated as p ≈ 233π ≈ 732. We read from the data in Fig. 4(b) that the wave packet traverses angular distance
∆α ≈ 7.5π in time ∆τ = 4000, implying angular velocity ω = ∆α/∆τ ≈ 0.0059. Multiplying with the perimeter, we
obtain the absolute speed of the wave packet propagation v = ωp ≈ 4.3.

We find that the two extracted values of the velocity with which the wave packets propagate along the boundary
differ by ∼5%. This is acceptable agreement within our margin of error, given that several of the discussed quantities
(proper choice of R, as well as intervals ∆` and ∆α) can only be extracted up to a few-percent confidence interval.
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XV. Phase diagram of the hyperbolic Haldane Bloch Hamiltonian at half-filling and Φ = π/2

Recall that for the original Haldane model on the Euclidean honeycomb lattice [30], the inclusion of M drives a
trivial energy gap while it is the inclusion of t2 (at finite flux) that drives the topological gap. The boundary between

the trivial and the topological insulating phases is given by the analytic formula |M/t2| = 3
√

3 |sin Φ|. In particular,
the topological phase of the Euclidean Haldane model persists when M is set to zero.

In this Supplementary Note, we briefly investigate whether a similar competition between the M -driven trivial gap
and the t2-driven topological gap also occurs at the half-filling for the hyperbolic Haldane Hamiltonian. To that
end, we numerically determine [60] the energy gap at half-filling as a function of (M, t2) for fixed values t1 = 1 and
Φ = π/2. The result of this analysis is plotted in Supplementary Fig. S12(a), where the red dot indicates the value
of model parameters considered throughout the the manuscript.

FIG. S12. Energy gap of the hyperbolic Haldane Bloch Hamiltonian at half-filling. a We set t1 = 1 and Φ = π/2,
while keeping the parameters M and t2 variable. Shades of gray indicate the bulk energy gap of the hyperbolic Haldane model
as determined by the hyperbolic band theory. Bright tones indicate large values of the gap (expressed in multiples of t1 = 1),
while saturated black corresponds to gap closing. Red dot at M = 1/3 and t2 = 1/6 corresponds to the choice of parameters
considered throughout the manuscript, where the energy gap at half-filling is trivial. The blue dot at M = 1/3 and t2 = 3/2
corresponds to the parameters briefly discussed in Supplementary Note XV, where the energy gap at half-filling is associated
with non-vanishing Chern numbers Ca, Cb, Cc. b–d Wilson-loop spectra for M = 1/3 and t2 = 3/2 (blue dot in panel a), which
indicate Ca = +2, Cb = −2, and Cc = +2.

The first striking feature we observe in Supplementary Fig. S12(a) is that the hyperbolic Haldane model at half-
filling, in contrast with the Euclidean one [30], is gapless for M = 0. We further observe, in resemblance with
the Euclidean case, that besides the insulating phase at small values of |t2/M | there are additional gapped regions
occurring at large values of |t2/M |. To determine the band topology of these additional insulating phases, we fix
M = 1/3 and t2 = 3/2, which correspond to the blue dot in Supplementary Fig. S12(a). We apply the Wilson-loop
technique to compute the values of Chern numbers Ca,b,c in the insulating phase that occurs at large and positive
t2/M . The results of our analysis, plotted in Supplementary Fig. S12(b–d), imply Ca = +2, Cb = −2, and Cc = +2
i.e., the energy gap that occurs at half filling for large t2/M is topologically non-trivial. Note, however, that the even
value of the invariant implies that the corresponding rhKM model for this choice of parameters exhibits trivial values
of the Z2-valued invariants νa and νb. For large and negative t2/M , the signs of the Chern numbers Ca,b,c are flipped.
We also verified that the second Chern number for these insulating regions is trivial.

Finally, we check that, in contrast to the half-filled case, the bulk energy gap at fillings f ∈ { 5
16 ,

11
16} (which

correspond to the Chern insulating phases studied in the main text) do not close for M = 0. This is illustrated
explicitly for f = 5

16 in Fig. S13 (with the data for f = 11
16 looking essentially identical). Note that at M = 0 the

hyperbolic Haldane model acquires an additional symmetry, namely rotation by π/4 around the center of the Bolza
cell, which permutes momenta as k1 7→ k2 7→ k3 7→ k4 7→ −k1. This symmetry implies that at M = 0 (and also for all
gapped phases at finite M that extend to M = 0) we have

Ca := C12 = C23 = C34 = C14 =: Cc, (S41)
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reducing the number of independent Chern numbers to two. [Let us remark that the remaining two Chern numbers
could potentially be related by the three-fold rotation around a vertex of the {8, 3} lattice. However, as this symmetry
is known to act non-orthogonally on the four momentum components [9], we leave a careful investigation of this
symmetry for a future study.]

FIG. S13. Energy gap of the hyperbolic Haldane Bloch Hamiltonian at filling f = 5/16. Two gapped regions
can be identified. These regions are related by a sign flip t2 7→ −t2. Since the same change can be interpreted as the action
of time-reversal (complex conjugation flips Φ 7→ −Φ, which at Φ = π/2 corresponds to a sign flip of the purely imaginary t2
term), the two gapped regions must exhibit opposite sign of all Chern numbers. The red dot indicates the parameter values
t2 = M

2
= 1

3
which are assumed throughout the main text. Since the gapped phase extends to M = 0, it follows from an

additional (π/4)-rotation symmetry that necessarily Ca = Cc, cf. Eq. (S41).
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