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Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm
of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-)
dimensional momentum space. To explore the uncharted topological aspects arising in hyperbolic band
theory, we here introduce elementary models of hyperbolic topological band insulators: the hyperbolic
Haldane model and the hyperbolic Kane-Mele model; both obtained by replacing the hexagonal cells of
their Euclidean counterparts by octagons. Their nontrivial topology is revealed by computing topological
invariants in both position and momentum space. The bulk-boundary correspondence is evidenced by
comparing bulk and boundary density of states, by modeling propagation of edge excitations, and by their
robustness against disorder.
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Introduction.—The interplay between the crystal struc-
ture of materials and their electronic band-structure topo-
logy is pivotal to modern condensed matter physics, with
major recent developments in areas such as topological
quantum chemistry [1–3] and moiré materials [4]. With the
ground-breaking experimental realization of hyperbolic
lattices in coupled waveguide resonators [5] and electric-
circuit networks [6], such exotic lattices have been elevated
from purely mathematical objects [7,8] to promising table-
top platforms for simulating quantum many-body physics
in curved space. These experimental achievements have
also inspired numerous theoretical studies of hyperbolic
lattices. Notably, hyperbolic band theory (HBT) has been
formulated [9], enabling the characterization of their energy
spectra via band structures in momentum space. The range
of recently investigated physical phenomena further inclu-
des the effects of magnetic fields [10–12], continuum ap-
proximation [13], periodic boundary conditions [14–16],
hyperbolic crystallography [17], photon bound states [18],
exact trace formulas [19], Bose-Hubbard model [15], elas-
tic vibrations [20], and flat bands [21–24]. Notably, two
very recent works proposed concrete models of hyperbolic
topological insulators [25,26]; however, a systematic inves-
tigation of topological quantum numbers on hyperbolic
lattices remains largely unexplored.
Among the multitude of hyperbolic lattices, which are

tessellations of the two-dimensional (2D) hyperbolic plane
of negative curvature [27], the so-called f8; 3g lattice
presents a unique opportunity for a first systematic study

of band topology in toy models with topological ground
states. The graph of this lattice consists of regular octagons
with three lines meeting at each vertex. Hence it derives
from the honeycomb lattice (denoted f6; 3g in this context)
through replacing hexagons by octagons. Importantly,
HBT predicts that the Brillouin zone (BZ) of this lattice
is four-dimensional (4D) [17], with crystal momentum
k ¼ ðk1; k2; k3; k4Þ, separating the dimensions of position
and momentum space as a genuine property of hyperbolic
lattices. This enhanced dimensionality suggests [28,29] that
hyperbolic models may host larger families of strong and
weak topological band insulators than their Euclidean
counterparts.
In this Letter, we introduce two elemental models of

hyperbolic topological band insulators, the hyperbolic
Haldane and hyperbolic Kane-Mele (KM) models on the
f8; 3g lattice, which generalize the quintessential namesake
Euclidean models formulated on the f6; 3g lattice [30–34].
These models could be implemented experimentally using
the platforms of Refs. [5,6,35–37]. Importantly, due to the
applicability of both HBT and real-space topological
markers [38–42] on the f8; 3g lattice, we are able to study
band-topological properties in both position and momen-
tum space. This dual point of view allows us to compare
topological invariants of hyperbolic topological insulators
in momentum and position space, and to study their
associated bulk-boundary correspondence. Our models
and analysis surpass the study of hyperbolic Hofstadter
and Haldane-like models in Refs. [10,25,26] as they do not
utilize the complementary momentum-space picture.
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Tight-binding models.—We consider models on the
hyperbolic f8; 3g lattice, which is comprised of octagonal
faces with three lines meeting at each vertex, see Fig. 1(a).
This lattice consists of a 16-site unit cell that is repeated
infinitely many times according to a hyperbolic Bravais
lattice, which is the f8; 8g lattice in this case [17],
comprised of octagonal plaquettes with coordination num-
ber eight. We refer to the unit cell as the Bolza cell—a name
inspired by the fact that this cell covers the Bolza surface
(the most symmetric genus-two Riemann surface [43]). The
Bravais lattice is generated by four noncommuting hyper-
bolic translations, denoted γ1;…; γ4.
To obtain the energy bands for a tight-binding model

with nearest-neighbor (NN) hopping on the f8; 3g lattice
from HBT, the Bolza cell is equipped with twisted
boundary conditions [9], defined by four phase factors,
eik1 ;…; eik4 , along the directions of the four generators:
each bond crossing one of the eight sides of the Bolza cell
acquires a phase factor. This yields a 16 × 16 hyperbolic
Bloch HamiltonianHBlochðkÞ, whose eigenvalues comprise
16 energy bands of the f8; 3g lattice in 4D momentum
space. We henceforth set the NN hopping parameter
to unity.
The density of states (DOS) of tight-binding models,

ρðEÞ, can be obtained either (i) through exact diagonaliza-
tion (ED) on finite hyperbolic graphs, or (ii) via HBT by
sampling k over the 4D BZ. We refer to finite hyperbolic
graphs with open boundary as flakes. To remove the contri-
bution of boundary states, we define in ED calculations the
bulk-DOS as the sum of local-DOS on the 16 sites in the
innermost Bolza cell [44]. Whether the two just-defined
DOS functions should match for large systems remains at
present an open problem, since HBT only identifies eigen-
states transforming in Abelian representations of the

noncommutative translation group [45]. Nevertheless, the
results for the NN model, compared in Fig. 1(b), indicate an
auspicious level of agreement, with the deviations partly
attributable to residual boundary effects [46].
We next consider the inclusion of an on-site potential

�M with opposite sign on the two sublattices of the f8; 3g
lattice, marked with white and black in Fig. 1(a). In the
absence of a sublattice potential, the DOS is gapless at
E ¼ 0, whereas we observe a gap ΔE ¼ 2M for M ≠ 0.
This feature is reproduced both with ED and HBT. In fact,
for all tight-binding models studied in this work, whenever
HBT predicts a gap in the DOS at certain energies, then a
bulk gap is also found in this energy range with ED on
flakes. Whether this behavior generalizes to all hyperbolic
lattice models constitutes a formidable question for future
investigations.
Topological band insulators.—We introduce the hyper-

bolic Haldane model on the f8; 3g lattice by including
complex-valued next-to-nearest-neighbor hopping terms,
t2e�iΦ, to the tight-binding Hamiltonian of the previous
section. The positive (negative) sign is chosen in the
exponent for hopping in the clockwise (counterclockwise)
direction within an octagon. This model describes spinless
fermions coupled orbitally to staggered magnetic fluxes,
see Fig. 2(a). The associated Bloch Hamiltonian HHðkÞ
with crystal momentum k ¼ ðk1; k2; k3; k4Þ is constructed
using HBT [44]. The magnetic field breaks time-reversal
symmetry, locating the model in Altland-Zirnbauer class A
[28,47]; we therefore anticipate that its topology is encoded
by the Chern class [29,48].
We investigate in Fig. 2(b) the model in terms of the DOS

function ρHBTðE;ΦÞ as Φ is varied for t2 ¼ M=2 ¼ 1=6.
We identify extended gapped regions at filling fractions
f ¼ 5=16; 8=16; 11=16, corresponding, respectively, to
chemical potentials μ ¼ −1.3, 0, 1.3 at Φ ¼ π=2.

FIG. 1. Nearest-neighbor model on the f8; 3g lattice. (a) The
lattice consists of octagons with coordination number three.
The Bolza cell (multicolored octagon), the fundamental tile of the
hyperbolic Bravais lattice, contains six elementary octagons and
16 sites (black and white dots). The colored arrows labeled
γ1;…; γ4 are the generators of the hyperbolic Bravais lattice.
Rotation R (dark red) and reflection S (dark blue) are symmetries
of the model. (b),(c) Bulk density of states ρðEÞ for the nearest-
neighbor model on the f8; 3g-lattice, extracted from hyperbolic
band theory (HBT, red) vs. exact diagonalization (ED, blue) in
the absence (b) vs presence (c) of a sublattice potential M.

FIG. 2. Hyperbolic Haldane model. (a) Schematic depiction of
the model. Red dashed lines indicate next-to-nearest neighbor
hopping with amplitude t2e�iΦ. The phases �Φ arise due to
alternating magnetic fluxes [symbols ⊙ (⊗) in the innermost
octagon] through the system. (b) Density of states for t2 ¼
M=2 ¼ 1

6
computed from HBT, revealing three energy gaps.

(c) Bulk-DOS functions ρHBTðEÞ and ρEDbulkðEÞ for Φ ¼ π=2 (red
dashed line in b) computed using HBT (red) and ED (blue), and
the boundary-DOS ρEDboundary (green).
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(In contrast to the Euclidean case, nonvanishing M ≠ 0 is
necessary to open an energy gap at half-filling for the
hyperbolic Haldane model [44].) In Fig. 2(c) we observe that
the bulk gaps extracted from ED on flakes and from HBT
again agree. Two of the three gaps are special in that they are
filled by boundary states, as is inferred from ED by
integrating the local-DOS over boundary sites [44].
Below, we reveal that these energy gaps are associated with
nontrivial Chern topology and chiral edge states.
Next we introduce the hyperbolic Kane-Mele (KM)

model of spin-1
2
fermions on the f8; 3g lattice as a time-

reversal-symmetric topological model in Altland-Zirnbauer
class AII. The model can be interpreted as a “doubled”
version of the Haldane model, graded with a spin degree of
freedom, in the following sense [31,49]: denoting the
Hamiltonian of the Haldane model by HH, the Kane-
Mele Hamiltonian for the spin-up (spin-down) fermions
reads HH (H�

H), and is supplied with spin-mixing Rashba
term with amplitude λR. Since the hyperbolic curvature
induces nontrivial holonomy of the spin along closed loops
of the lattice, constructing a symmetry-compatible Rashba
term is challenging. We therefore simplify the model here by
assuming a nonconstant curvature that is concentrated at the
corners of the Bolza cell, while the curvature is flat every-
where else (for detailed construction see Supplemental
Material Fig. S1 [44]). We call this simplified model the
reduced hyperbolic KM model.
The reduced KM model is expected to exhibit energy

gaps at the same filling fractions as the Haldane model as
long as λR is sufficiently small. This is verified by the plot
of ρHBTðE; λRÞ in Fig. 3(a). The obtained data motivate us
to fix λR ¼ −1=6, in which case all three gaps are still
present. The comparison of the resulting ρHBTðEÞ and
ρEDbulkðEÞ is shown in Fig. 3(b). The same panel also displays
the corresponding ρEDboundaryðEÞ, which reveals filling of the
two outer energy gaps by edge states, portending a non-
trivial Kane-Mele topology.
Topological invariants.—We compute topological invari-

ants in momentum and position space for the band gaps of
both constructed models. In momentum space, we compute
the first Chern numbers of the Haldane model from the
Bloch Hamiltonian HHðkÞ in the six planes spanned by

pairs ðki; kjÞ of momentum components, i; j ¼ 1;…; 4. The
model exhibits (π=2)-rotation symmetry R around the center
of the Bolza cell [dark red arrow in Fig. 1(a)], which trans-
forms the group generators as ðγ1; γ2; γ3; γ4Þ ↦ ðγ3; γ4; γ−11 ;
γ−12 Þ; therefore, the Hamiltonians HHðk1; k2; k3; k4Þ and
HHðk3; k4;−k1;−k2Þ are related by a unitary transforma-
tion. Consequently, one can relate Chern numbers C12 ¼
C34≕ Ca and C14 ¼ C23≕ Cc. In addition, while reflection S
[dashed blue line in Fig. 1(a)] flips the magnetic fluxes �Φ,
its composition with time-reversal constitutes an antiunitary
symmetry of the Haldane model, transforming ðk1; k2;
k3; k4Þ ↦ ð−k4;−k3;−k2;−k1Þ and relating C13 ¼ C24≕
Cb. We compute Ca;b;c using Wilson loops [50,51], and find
that energy gaps at f ¼ 5=16; 11=16 have nontrivial Chern
number�1 in all planes, while the gap at f ¼ 8=16 does not
exhibit Chern topology, see Table I. Similarly, after utilizing
the R and S symmetry of HKMðkÞ, we identify three
independent Z2-topological invariants νij, namely, νa ≔
ν12 ¼ ν34, νb ≔ ν13 ¼ ν24, and νc ≔ ν14 ¼ ν23. We find
that νa;b;c are all nontrivial for the two outer band gaps,
while they are trivial for the inner gap, see Table I. [We
discuss in the Supplemental Material [44] that ifM ¼ 0 then
an additional (π=4)-rotation symmetry further implies
Ca ¼ Cc and νa ¼ νc].
We also computed higher-dimensional topological in-

variants forHHðkÞ andHKMðkÞ, namely, theZ2-valued Fu-
Kane-Mele invariant [52] on 3D subspaces (for KM) and
the second Chern number [48,53] in 4D BZ (for both).
These, however, are all trivial. Nevertheless, hyperbolic toy
models with nonvanishing values of such topological in-
variants could be constructed through reverse engineering:
starting from a 4D Euclidean Bloch-Hamiltonian,HEucðkÞ,
which features such topological invariants, one constructs a
hyperbolic tight-binding model where each component ki
of k is replaced by a generator γi of the hyperbolic Bravais
lattice. We leave this promising route for designing topo-
logical hyperbolic Hamiltonians for future research.
We complement the momentum-space discussion of the

band topology of the two models with real-space topo-
logical markers [38–42]. Importantly, these computations
include states transforming in all representations of the
noncommutative translation group, hence going beyond
HBT. For the Haldane model, we compute the real-space
Chern number CRS as introduced in Ref. [39] (detailed in

FIG. 3. Hyperbolic Kane-Mele model. (a) Density of states for
t2 ¼ M=2 ¼ 1

6
computed from HBT, which reveals three energy

gaps at small Rashba coupling λR. (b) Bulk-DOS functions for
λR ¼ − 1

6
(red dashed line in (a) computed using HBT (red) and

ED (blue), and the boundary-DOS function (green).

TABLE I. Values of topological invariants for the considered
hyperbolic models, with the three energy gaps labeled by their
filling fraction (f) and chemical potential (μ).

Haldane Kane-Mele

f μ Ca Cb Cc CRS νa νb νc νRS

5=16 −1.3 −1 þ1 −1 −0.986 1 1 1 −0.971
8=16 0 0 0 0 0 0 0 0 0
11=16 þ1.3 −1 þ1 −1 −0.986 1 1 1 −0.971
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Supplemental Material [44]). This algorithm does not
warrant quantized results, but we confirm that integers
are approached as the summation regions are enlarged. Our
position-space analysis confirms that the energy gaps at
μ ¼ �1.3 are topological, while the one at μ ¼ 0 is trivial,
see Table I. We observe CRS ¼ Ca ¼ −Cb ¼ Cc for all
phases with gapped bulk. Recall here that for 2D
Euclidean lattices we have CRS ¼ C12 [38,39], whereas
no exact relation is currently known for hyperbolic lattices.
We further adapt the techniques of Refs. [39–42] to

compute the real-space spin Chern number νRS ∈ Z of the
reduced KM model for each bulk gap. This invariant is
integer-valued as long as spin-mixing terms in the
Hamiltonian are sufficiently weak, and for Euclidean lattice
models it obeys νRS ¼ ν12ðmod 2Þ [41,42]. We observe
that the extracted Z2 invariants obey νRS ¼ νa ¼ νb ¼ νc
(mod 2) for all cases analyzed. Whether there exists a
simple universal relation between the parities of νa;b;c;RS
constitutes another open question.
Bulk-boundary correspondence.—We finally investigate

whether the nontrivial band topology identified in the bulk
for both models is reflected in topological edge states on the
boundary. For this, we (i) extract the edge-state dispersion,
(ii) showcase the propagation of an edge-localized wave
packet around the flake boundary, and (iii) investigate their
robustness against disorder.
(i) When computing for a circular flake the edge-state

dispersion (E) against angular momentum (l), note that the
latter is only defined modulo 4 due to the fourfold-rotation
symmetry R. To obtain EðlÞ for unbounded l ∈ Z, we de-
compose the lattice eigenstates jϕji into eigenmodes jψn;li
of the Laplace-Beltrami operator defined in the continuum
[6,13] and select the number l with the largest contribution
(for details see Supplemental Material [44]). We plot EðlÞ
for the edge states in the hyperbolic Haldane model for the
energy gap at μ ¼ 1.3 in Fig. 4(a). We observe a single
dispersive branch for positive l only, implying chiral edge
state at the flake boundary, in agreement with jCRSj ¼ 1. An
analogous analysis for the reduced Kane-Mele model at the
same filling reveals a pair of counterpropagating helical
branches, compatible with jνRSj ¼ 1 (see Supplemental
Material Fig. S7 [44]).
(ii) To study the propagation of a wave packet along the

edge, we construct a boundary-localized Gaussian state
with energy near μ and with energy width σ [44]. We plot in
Figs. 4(b) and 4(c) the time-evolution of a wave packet ini-
tialized with parameters ðμ; σÞ ¼ ð1.3; 0.025Þ in the hyper-
bolic Haldane model. We find the center of the packet
smoothly propagates along the boundary in time. The
angular group velocity of the wave packet extracted from
the time evolution matches the edge dispersion from (i) via
ωgroup ¼ dE=dl. We similarly analyzed the edge-state
propagation for the reduced KM model [44] and confirmed
their anticipated helical character.

(iii) To quantify the robustness of the edge states against
Anderson localization when subject to disorder, we show
that they retain a small inverse participation ratio (IPR).
Here 0 < IPR ≤ 1 is defined such that an eigenstate jϕji
characterized by value IPRj has most support over approxi-
mately 1=IPRj sites [44]. For the reduced KM model, we
add random spin-mixing terms that either preserve (TRS) or
break (TRB) time-reversal symmetry of the model. These
can be interpreted as random Rashba terms and random

FIG. 4. Topological edge states. (a) Edge-dispersion E as a
function of angular momentum l for chiral edge states in the
upper energy gap of the hyperbolic Haldane model. (b) Propa-
gation of a Gaussian wave packet along the flake boundary; hαi is
the angular displacement in time τ, and error bars indicate the
width of the wave packet. (c) Snapshots of the wave packet at
τ ¼ 0, 240, 480, 720 (colored, respectively, red, yellow, green,
and blue). The area of a disk centered at a given site encodes the
probability to find the particle at that site.

FIG. 5. Robustness against Anderson localization. For the
reduced hyperbolic KM model, we consider inclusion of random
spin-mixing terms that preserve (TRS, blue) or break (TRB, red)
time-reversal symmetry. A dot with coordinates ðEj; IPRjÞ
represents the energy and the inverse participation ratio of an
eigenstate jϕji in the flake geometry. The random terms are
drawn from a uniform distribution with Wmax ¼ 0.02 (a) and
Wmax ¼ 0.2 (b). The blue (yellow) backgrounds indicate energy
ranges corresponding to bulk gap (bulk band) in the absence of
disorder.
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magnetic fields, respectively, with an amplitude W ∈
½−Wmax;Wmax� drawn from a uniform distribution. The
results in Fig. 5 indicate that disorder with TRB leads to
localization of the edge states, whereas increasing Wmax in
the presence of TRS does not change their IPR values
significantly, as expected for topological edge states. We
similarly verified for the hyperbolic Haldane model that
inclusion of random on-site potential drawn from a uniform
distribution W ∈ ½−Wmax;Wmax� has little effect on the IPR
of the edge states. In addition, we confirmed that the chiral
propagation of the edge states without backscattering is
preserved under the addition of the random terms (see
Supplemental Material Fig. S4 [44]). This provides further
evidence of the nontrivial topology of the constructed
model.
Outlook.—Our work constitutes an essential step

towards designing topological hyperbolic Hamiltonians
and exploring the interplay of geometry and topology in
such systems. It is natural to wonder if similar constructions
of topological insulators generalize to other hyperbolic
fp; qg lattices. Indeed, the Haldane model on the f6; 4g
lattice has very recently been implemented as an electric-
circuit network by Ref. [25], while another model of Chern
insulator on the f8; 3g lattice, although lacking translation
symmetry, has been considered by Ref. [26]. However,
these works did not apply HBT to characterize the models,
thus lacking the momentum-space language.
A key difference between hyperbolic and Euclidean

lattices is the extensive scaling of the boundary in the
hyperbolic case, implying a finite fraction of sites are at the
boundary irrespective of the system size [13,22].
Consequently, a macroscopic fraction of all states con-
tributes to topological edge modes, in stark contrast to
Euclidean topological models. It will be intriguing to
investigate features of non-Hermitian topology in this
context, as the non-Hermitian skin effect likewise affects
a macroscopic fraction of the spectrum [54–59]. The
extensive hyperbolic boundary is also anticipated to give
access to novel one-dimensional many-body models
affected by the bulk design through the bulk-boundary
correspondence.

TheWolfram Language code and the generated data used
to arrive at the conclusions presented in this work are
publicly available in Ref. [60]. The manuscript is based on
the master’s thesis of one of the authors [49].
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moiré materials, Nat. Rev. Mater. 6, 201 (2021).

[5] Alicia J. Kollár, Mattias Fitzpatrick, and Andrew A. Houck,
Hyperbolic lattices in circuit quantum electrodynamics,
Nature (London) 571, 45 (2019).

[6] Patrick M. Lenggenhager, Alexander Stegmaier, Lavi K.
Upreti, Tobias Hofmann, Tobias Helbig, Achim Vollhardt,
Martin Greiter, Ching Hua Lee, Stefan Imhof, Hauke Brand,
Tobias Kießling, Igor Boettcher, Titus Neupert, Ronny
Thomale, and Tomáš Bzdušek, Simulating hyperbolic space
on a circuit board, Nat. Commun. 13, 4373 (2022).

[7] W. Magnus, Noneuclidean Tesselations and Their Groups
(Academic Press, New York, 1974).

[8] H. S. M. Coxeter and W. O. J. Moser, Generators and
Relations for Discrete Groups (Springer Berlin Heidelberg,
Berlin, Heidelberg, 1980).

[9] Joseph Maciejko and Steven Rayan, Hyperbolic band
theory, Sci. Adv. 7, eabe9170 (2021).

[10] Sunkyu Yu, Xianji Piao, and Namkyoo Park, Topological
Hyperbolic Lattices, Phys. Rev. Lett. 125, 053901 (2020).

[11] Kazuki Ikeda, Shoto Aoki, and Yoshiyuki Matsuki, Hyper-
bolic band theory under magnetic field and Dirac cones on a
higher genus surface, J. Phys. Condens. Matter 33, 485602
(2021).

[12] Alexander Stegmaier, Lavi K. Upreti, Ronny Thomale, and
Igor Boettcher, Universality of Hofstadter Butterflies on
Hyperbolic Lattices, Phys. Rev. Lett. 128, 166402 (2022).

[13] Igor Boettcher, Przemyslaw Bienias, Ron Belyansky, Alicia
J. Kollár, and Alexey V. Gorshkov, Quantum simulation of
hyperbolic space with circuit quantum electrodynamics:
From graphs to geometry, Phys. Rev. A 102, 032208 (2020).

PHYSICAL REVIEW LETTERS 129, 246402 (2022)

246402-5

https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1126/science.abg9094
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/s41586-019-1348-3
https://doi.org/10.1038/s41467-022-32042-4
https://doi.org/10.1126/sciadv.abe9170
https://doi.org/10.1103/PhysRevLett.125.053901
https://doi.org/10.1088/1361-648X/ac24c4
https://doi.org/10.1088/1361-648X/ac24c4
https://doi.org/10.1103/PhysRevLett.128.166402
https://doi.org/10.1103/PhysRevA.102.032208


[14] Joseph Maciejko and Steven Rayan, Automorphic Bloch
theorems for hyperbolic lattices, Proc. Natl. Acad. Sci.
U.S.A. 119, e2116869119 (2022).

[15] Xingchuan Zhu, Jiaojiao Guo, Nikolas P. Breuckmann,
Huaiming Guo, and Shiping Feng, Quantum phase tran-
sitions of interacting bosons on hyperbolic lattices, J. Phys.
Condens. Matter 33, 335602 (2021).

[16] Nikolas P. Breuckmann and Barbara M. Terhal, Construc-
tions and noise threshold of hyperbolic surface codes, IEEE
Trans. Inf. Theory 62, 3731 (2016).

[17] Igor Boettcher, Alexey V. Gorshkov, Alicia J. Kollár, Joseph
Maciejko, Steven Rayan, and Ronny Thomale, Crystallo-
graphy of hyperbolic lattices, Phys. Rev. B 105, 125118
(2022).

[18] Przemyslaw Bienias, Igor Boettcher, Ron Belyansky, Alicia
J. Kollár, and Alexey V. Gorshkov, Circuit Quantum
Electrodynamics in Hyperbolic Space: From Photon Bound
States to Frustrated Spin Models, Phys. Rev. Lett. 128,
013601 (2022).

[19] Adil Attar and Igor Boettcher, Selberg trace formula in
hyperbolic band theory, Phys. Rev. E 106, 034114 (2022).

[20] Massimo Ruzzene, Emil Prodan, and Camelia Prodan,
Dynamics of elastic hyperbolic lattices, Extreme Mech.
Lett. 49, 101491 (2021).

[21] Alicia J. Kollár, Mattias Fitzpatrick, Peter Sarnak Sarnak,
and Andrew A. Houck, Line-graph lattices: Euclidean and
non-Euclidean flat bands, and implementations in circuit
quantum electrodynamics, Commun. Math. Phys. 376, 1909
(2019).

[22] Alberto Saa, Eduardo Miranda, and Francisco Rouxinol,
Higher-dimensional Euclidean and non-Euclidean struc-
tures in planar circuit quantum electrodynamics, arXiv:
2108.08854.

[23] Tomáš Bzdušek and Joseph Maciejko, Flat bands and band-
touching from real-space topology in hyperbolic lattices,
Phys. Rev. B 106, 155146 (2022).
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