
Supplemental Material to:
Universal higher-order bulk-boundary correspondence of triple nodal points

Patrick M. Lenggenhager ,1, 2, 3, ∗ Xiaoxiong Liu ,3 Titus Neupert ,3 and Tomáš Bzdušek 1, 3, †
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I. QUATERNION CHARGE IN DIFFERENT BRILLOUIN
ZONES

In this supplement we prove the following conjecture:

Conjecture 1. We assume an N-band system with PT -
symmetry squaring to +1, described in the orbital basis by a
Hermitian Bloch HamiltonianH(k). Let γ : t ∈ [0, 1] 7→ γ(t)
be a closed contour without any band degeneracies on it that
lies in the (first) BZ starting at the base point P = γ(0) = γ(1),
and let be b a reciprocal lattice vector. We define the following
three paths:

(i) the shifted contour γ′(t) ≡ γ(t) + b,

(i) the path γP,b along b connecting the base point P to
P′ ≡ γ′(0) (assuming once more that there are no band
degeneracies along it), and

(iii) their concatenation (read from left to right)

γ̃ = γP,b ◦ γ
′ ◦ γ−1

P,b, (1)

which is a closed contour with the same base point P
as γ.

Then, the quaternion invariants on γ and γ̃ (computed with the
same gauge choice for the real eigenstates at P, cf. Sec. I D)
are related by

q(γ̃) = FP,bq(γ)FP,b
−1
, (2)

where

FP,b ≡
∏

i : eiϕi=−1

ϵi (3)

with ϕi the Berry phase of band i along b and {ϵi}Ni=1 the gener-
ators (ϵiϵ j + ϵ jϵi = −2δi j) of the Clifford algebra Cℓ0,N as used
in the construction of Spin(N) [cf. Sec. I B 2]. (Let us empha-
size that this is different from the Clifford algebra Cℓ0,N−1, the
particular subset PN of which corresponds to the generalized
quaternion charge [1]; cf. Sec. I B 3.) Note that the ordering
of the factors in Eq. (3) does not affect Eq. (2) as long as the
same ordering is used in both occurrences of FP,b. Neverthe-
less, for concreteness, we fix the ordering such that factors
with smaller subscript i appear to the right inside the product.
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Before proving the above conjecture, let us briefly restate
the corollary from Appendix E and referred to in Sec. III B:

Corollary 1. Assume an N-band system with PT -symmetry
squaring to +1 described in the orbital basis by a Hermitian
Bloch Hamiltonian H(k). Let γ : t ∈ [0, 1] 7→ γ(t) be a
closed contour with no band degeneracies located inside the
(first) BZ. The path starts at the base point P = γ(0) = γ(1)
and we decompose

q(γ) = s
∏
j∈J

g j (4)

with s ∈ {±1}, g j the generators defined in Refs. [1, 2] and
J ⊆ {1, 2, . . . ,N−1} a subset of the energy gaps of the N-band
Hamiltonian (factors with smaller subscript j appearing to the
right). Then, the quaternion charge on the corresponding con-
tour γ̃ with the same base point and enclosing the same band
inversions but in the BZ shifted by the reciprocal lattice vector
b [cf. Fig. 25] is

q(γ̃) = (−1)m
q(γ), (5)

where m is the number of elements of the set{
j ∈ J

∣∣∣ϕ j , ϕ j+1

}
(6)

with ϕ j ∈ {0, π} the Berry phase of the jth band in the direc-
tion b. [Note that in the conditioning in Eq. (6) the label j + 1
may not be in the set J.]

Proof. Given Conjecture 1, the only thing to show is that
Eq. (2) reduces to Eq. (5) given Eq. (4). The generators g j
of the generalized quaternion group can be defined in terms of
the generators ϵi of Cℓ0,N [see Eq. (51)] as

g1 = −ϵ1ϵ2, g j≥2 = ϵ jϵ j+1. (7)

The above two expressions can be jointly encoded as g j =

(−1)δ j1ϵ jϵ j+1. By combining Eqs. (2) and (4), we first find

(through a repeated insertion of the identity FP,b
−1

FP,b = 1
into the product over j ∈ J) that

q(γ̃) = s

 ∏
i : eiϕi=−1

ϵi


∏

j∈J

g j


 ∏

i : eiϕi=−1

ϵi

−1

= s
∏
j∈J


 ∏

i : eiϕi=−1

ϵi

 (−1)δ j1ϵ jϵ j+1

 ∏
i : eiϕi=−1

ϵi

−1 . (8)
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Observe that for every j ∈ J, the conjugation with FP,b =∏
i : eiϕi=−1 ϵi results in an overall minus sign if and only if ex-

actly one of ϵ j and ϵ j+1 is present in FP,b; otherwise, the conju-
gation does not affect the factor ϵ jϵ j+1. Therefore, the number
of −1 factors picked up through the conjugation is equal to the
number of j ∈ J where eiϕ j , eiϕ j+1 . This is equal to the order
m of the set in Eq. (6), implying Eq. (5). □

In preparation for the proof of Conjecture 1, we prove sev-
eral lemmas. For that we proceed as follows. In Sec. I A we
discuss the form and the (non-)periodicity of aPT -symmetric
Bloch Hamiltonian in the extended momentum space (i.e., be-
yond the first Brillouin zone). In Secs. I B and I C we first
revisit the construction of the double covers of SO(N) and
of its subgroup PN , and then show how to lift elements of
SO(N) close to the identity after being conjugated by ele-
ments in PNh < O(N). Armed with the derived lemmas, we
continue by discussing (i) the quaternion charge on the various
paths involved in the conjecture in Sec. I D and (ii) the Berry
phases of the contour winding around the Brillouin zone torus
in Sec. I E. Finally, we use the derived lemmas and results to
prove the conjecture 1 in Sec. I F.

A. Bloch Hamiltonian

Before analyzing the quaternion charges, we review in the
present section several properties of Bloch Hamiltonians in
PT -symmetric systems. Note that we adopt the Bloch con-
vention which takes into account the positions of the or-
bitals within the unit cell when forming the Bloch basis, see
Eq. (13). This is the convention in which the Berry curvature
respects the symmetries of the lattice [3, 4] and the Zak phase
of energy bands is in one-to-one correspondence with their
electric polarization [5]. The prize to pay for this physical in-
terpretability is that the resulting Bloch Hamiltonian may be
non-periodic in reciprocal-lattice vectors.

Recall [6] that, due to (PT )2 = +1, for each k, there is a
change of basis given by a unitary matrix Vk such that PT is
represented by complex conjugation K :

VkDk(PT )KV†k = K (9)

(here the unitary matrix Dk(PT ) is the corepresentation PT ).
It follows that

VkH(k)V†k ≡ HR(k) (10)

is a real symmetric matrix. Note that Vk is not unique, but any
WkVk for Wk ∈ O(N) defines another such basis.

Given a real symmetric Hamiltonian HR(k), it is natural to
write its eigenstates in a real gauge; if we additionaly order
the eigenstates as columns from left to right according to in-
creasing energy, we obtain the eigenframe u ∈ O(N), and

HR(k) = u(k)E(k)u(k)⊤. (11)

However, the orthogonal eigenframe is not unique, but ex-
hibits a gauge degree of freedom, u 7→ uF, where F ∈

PNh � ZN
2 is a diagonal matrix of ±1’s. In particular, note

that F2 = FF⊤ = 1.
It is important to note that while the eigenenergies are pe-

riodic in momentum space, the Bloch Hamiltonian H(k) in
general is only periodic up to a unitary transformation,

H(k + b) = UbH(k)U†b, (12)

where b is a reciprocal lattice vector, and the unitary matrix is
defined up to an overall multiplication by a phase factor.

In the context of a tight-binding model with orbital α placed
at position rα relative to the unit cell with origin at R and
Hamiltonian Ĥ , we define the Bloch basis

|k, α⟩ =
∑

R

eik·(R+rα) |R, α⟩ , (13)

where |R, α⟩ forms the tight-binding basis, and the sum is over
Bravais lattice vectors R. Then, the Bloch Hamiltonian H(k)
is the matrix with componentsHαβ(k) defined by〈

k, α
∣∣∣Ĥ ∣∣∣k′, β〉 = Hαβ(k)δk,k′ . (14)

and the unitary transformation in Eq. (12) is given by

Uαβb = e−ib·rαδαβ (15)

in the orbital basis |R, α⟩.

In the basis, where the Hamiltonian is real, we have the
following lemma:

Lemma A.1. In the context of an N-orbital tight-binding
model with PT symmetry, Ub,R ≡ VkUbV†k ∈ O(N) and Ub,R
is independent of k.

Proof. In real space PT acts like inversion, mapping a posi-
tion vector r (relative to the center of the unit cell) to −r. If
PT is a symmetry of the system, then there are two options for
each tight-binding orbital α: (1) it is mapped to itself (poten-
tially to a Bravais-translation-related copy of itself in another
unit cell) or (2) it is exchanged with another orbital. This im-
plies that, in the orbital basis |R, α⟩, the corepresentation ma-
trix Dk(PT ) is block-diagonal with one- and two-dimensional
blocks. Below we consider both cases (1) and (2) to explicitly
construct Vk such that

Vk Dk(PT )V⊤k = 1, (16)

i.e., the unitary rotation from the orbital basis to the basis in
whichPT is represented by complex conjugation [cf. Eq. (9)].

Let us first consider option (1). For the orbital α to
be mapped to itself under PT , its position rα must be an
inversion-symmetric point, i.e., −rα = rα + Rα for some Bra-
vais lattice vector Rα. Then, rα = − 1

2 Rα, and the correspond-
ing block of the corepresentation matrix must take the form

Dk(PT ) = e−ik·Rα+iφα (17)

with some phase φα ∈ R. One trivially verifies that
Dk(PT )Dk(PT )

∗
= 1, as expected for spinless bands. We
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next observe that the corresponding block of Vk satisfying
Eq. (16) is

Vk = e−
1
2 (−ik·Rα+iφα). (18)

Therefore Ub defined in Eq. (15) is transformed to

Ub,R = Vke−ib·rαV†k = ei 1
2 b·R. (19)

Note that b is a reciprocal lattice vector and R a Bravais lattice
vector, such that 1

2 b ·R is 0 or π (modulo 2π) and Ub,R = ±1 ∈
O(1) is independent of k.

Next, we consider option (2). For concreteness let us as-
sume that the orbitals α and β are mapped to each other, then
the corresponding block of the (unitary) corepresentation ma-
trix must be off-diagonal,

Dk(PT ) =
(

0 eiφαβ

eiφαβ 0

)
, (20)

where the phases of the off-diagonal matrix elements must be
equal in order to satisfy Dk(PT )Dk(PT )

∗
= 1. Again we

construct the corresponding block of Vk satisfying Eq. (16):

Vk =
e−i 1

2 φαβ

√
2

(
1 1
i −i

)
. (21)

The fact that orbitals α and β are mapped to each other under
PT implies that −rα = rβ and thus

Ub =

(
e−ib·rα 0

0 eib·rα

)
. (22)

In the transformed basis, we therefore end up with

Ub,R = VkUbV†k =
(

cos(−b · rα) sin(−b · rα)
− sin(−b · rα) cos(−b · rα)

)
∈ O(2), (23)

which is independent of k.
We have shown that the full Vk is block-diagonal and be-

cause Ub is diagonal [cf. Eq. (15)] this implies that Ub,R is
also block diagonal with k-independent blocks either in O(1)
or O(2). Therefore, Ub,R ∈ O(N) is k-independent as well. □

B. Double covers of SO(N) and PN

1. Lie algebra so(N)

We consider the special orthogonal group SO(N), whose
Lie algebra is denoted so(N). A basis for so(N) is given by the
N × N matrices

Li j = −Ei j + E ji, i < j, (24)

where (Ei j)ab = δaiδb j is the matrix with a single non-zero
element 1 at position (i, j). The matrices Ei j satisfy

Ei jEkℓ = δ jkEiℓ, (25)

such that[
Li j, Lkℓ

]
= −δiℓLk j + δikLℓ j − δ jℓLik + δ jkLiℓ, (26)

which defines the Lie algebra.

2. Construction of Spin(N)

The simply-connected double cover of SO(N), called
Spin(N), can be constructed [7] via the Clifford algebra Cℓ0,N
with generators ϵi satisfying

ϵiϵ j + ϵ jϵi = −2δi j. (27)

We note that the quadratic elements

ti j ≡ −
1
2
ϵiϵ j, i < j, (28)

satisfy the same commutation relation as Eq. (26):[
ti j, tkℓ

]
= −δiℓtk j + δiktℓ j − δ jℓtik + δ jktiℓ, (29)

such that we can construct the isomorphism

so(N) → spin(N)
Li j 7→ Li j ≡ ti j = −

1
2 ϵiϵ j

. (30)

of the two Lie algebras.

Using the exponential map of elements in the Lie algebras,
we obtain the corresponding Lie groups:

e
∑

i< j αi jLi j ∈ SO(N), e
∑

i< j θi jti j ∈ Spin(N). (31)

The isomorphism of Lie algebras in Eq. (30) induces a homo-
morphism of the corresponding Lie groups. In particular, for
elements of SO(N) close to the identity one can construct the
lift map:

· : e
∑

i< j αi jLi j 7→ e
∑

i< j αi jti j . (32)

For A ∈ SO(N) close to the identity, we denote the unique lift
to Spin(N) close to the identity, as defined in Eq. (32), by A.

We proceed to develop an elementary intuition about the lift
map · : SO(N)→ Spin(N) for elements close to the identity.

Because Spin(N) is the double cover of SO(N), we have
the following short exact sequence of group homomorphisms:

1 −→ Z2 = {±1}
φ
−→ Spin(N)

σ
−→ SO(N) −→ 1 (33)

where φ(±1) is in the center of Spin(N), and σ is a two-to-one
projection map. Let as clarify in some detail what the se-
quence in Eq. (33) entails. Since φ is a group homomorphism,
we have

1 = φ(1) = φ((−1)(−1)) = φ(−1)φ(−1), (34)

thus we identify φ(−1) = −1 ∈ Spin(N), i.e., as the non-trivial
element of Spin(N) that commutes with all other elements of
Spin(N). The exactness of the above sequence implies that

1 = (σ ◦ φ)(±1) = σ(±1), (35)

i.e., the center ±1 ∈ Spin(N) projects onto the identity ele-
ment 1 ∈ SO(N).
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Now consider M1,M2 ∈ Spin(N) with σ(M1) = σ(M2),
then

σ(M1M−1
2 ) = σ(M1)σ(M2)−1 = 1, (36)

i.e., M1M−1
2 is in the kernel of σ, which due to the exactness

of the sequence is the image of φ; therefore

M1M−1
2 ∈ {±1} ⇒ M1 = ±M2. (37)

We also have that

σ
(
A
)
= A (38)

(i.e., the lift map followed by the projection map is equivalent
to the identity operation) for all elements A ∈ SO(N) close to
identity.

One should bear in mind that we use the same symbol ‘ ’
for two different (but closely related) maps: (1) the isomor-
phism of the Lie algebras [Eq. (30)], and the lift map of Lie-
group elements close to the identity [Eq. (32)]. These maps
are canonically related, because the Lie algebra g corresponds
to the tangent space of the Lie group G at the identity.

Lemma B.1. Let A ∈ SO(N) be close to the identity, A−1 its
inverse (which is also close to the identity). Let us denote their
(unique) lifts to Spin(N), according to Eq. (32), as A and A−1.
Then:

A
−1
= A−1. (39)

Proof. Set M1 := A
−1

, M2 := A−1, then

σ(M1) = σ
(
A
−1

)
= σ

(
A
)−1
= A−1 = σ(M2), (40)

where we used that σ is a group homomorpshim. It follows,
according to Eq. (37), that

A · A−1 = ±1. (41)

However, because the left hand side is a product of elements
close to the identity, the right hand side has to be close to the
identity as well, such that it can only be 1 (and not −1). Thus,
A
−1
= A−1, i.e., for elements A ∈ SO(N) close to the identity,

the lift map commutes with the matrix inverse map. □

3. The group PN and its double cover

We proceed to discuss the generalized quaternion charges,
as introduced in the supplementary material of Ref. 1. Con-
sider elements of the discrete subgroup,

PN =

〈{
eπLi j

}
i< j

〉
< SO(N), (42)

where the angular brackets denote the group generated by tak-
ing products of the elements of the set inside the brackets.
Note that

Ln
i j =


1, n = 0
(−1)kLi j, n = 2k + 1, k ∈ N0

(−1)k(Eii + E j j), n = 2k, k ∈ N>0

, (43)

resulting in

eαLi j = 1 + sin(α)Li j + (cos(α) − 1) (Eii + E j j). (44)

For the elements of PN we thus have

eπLi j = 1 − 2(Eii + E j j), (45)

i.e., diagonal matrices with +1 on the diagonal except for the
ith and jth element, which are −1. Note that e−πLi j = eπLi j =

(e−πLi j )−1. (Let us also remark that throughout this supplemen-
tal material we do not use the Einstein summation convention,
i.e., there is no implicit summation over repeated indices.)

The double cover of PN , denoted PN < Spin(N), can be
constructed starting from the generators of PN : eαi jLi j and ap-
plying the algebra isomorphism in the exponent, then

PN =

〈{
eπti j

}
i< j

〉
. (46)

Since for i , j, t2
i j = −

1
4 , we find

eθti j = cos
(
θ

2

)
+ 2ti j sin

(
θ

2

)
(47)

such that the generators of PN are eπti j = 2ti j, and

σ
(
2ti j

)
= eπLi j . (48)

The above results allow us to relate the generators {e j}
N−1
j=1 of

PN and of the Clifford algebra Cℓ0,N−1 introduced in Ref. 1 to
the generators {ϵi}Ni=1 of Cℓ0,N adopted in Sec. I B 2, namely”

e j ≡ 2t1, j+1 = −ϵ1ϵ j+1. (49)

The same reference introduces an alternative, physically mo-
tivated set of generators

g j ≡

e1, j = 1
e j−1e j, 2 ≤ j ≤ N − 1

. (50)

It follows from combining the preceding equations that

g j =

−ϵ1ϵ2, j = 1
ϵ jϵ j+1, 2 ≤ j ≤ N − 1

. (51)

4. The group PNh

The group PNh of diagonal matrices with±1 on the diagonal
is not a subgroup of SO(N), but a subgroup of O(N). It can be
written as

PNh = PN ∪ (1 − 2Eii)PN (52)

for any 1 ≤ i ≤ N. In the following, we will consider conju-
gation of elements of SO(N) with elements of PNh. Since the
determinant of a product equals the product of the determi-
nants of its factors, conjugation of an element in SO(N) with
an element of PNh does not leave SO(N).
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Similarly, the double cover PNh of PNh can be constructed
as

PNh = PN ∪ ϵiPN (53)

for any 1 ≤ i ≤ N. Based on this and the construction of PN ,
any p ∈ PNh can, for example, be written as

p = ϵ
p0
1

∏
i< j

(2ti j)pi j (54)

for p0, pi j ∈ {0, 1}. In this decomposition, p0 distinguishes
whether p lies in the proper subgroup PN (p0 = 0) or not
(p0 = 1). Finally, we remark that

σ(p) = (1 − 2Eii)p0 eπ
∑

i< j pi jLi j . (55)

for the projection of any element p ∈ PNh.

C. Lift of conjugated elements

Lemma C.1. We consider two basis elements of so(N): Li j
(i < j) and Lkℓ (k < ℓ). Then eπLi j Lkℓe−πLi j ∈ so(N) and

eπLi j Lkℓe−πLi j = eπti j tkℓe−πti j = (2ti j)tkℓ(2ti j)−1, (56)

which is an element of spin(N).

Proof. Using Eqs. (24) and (45), and that

∀i, j, k,ℓ : EiiLklE j j =
(
−δikδ jℓ + δiℓδ jk

)
Ei j, (57a)

∀k,ℓ : EiiLklEii = 0 (57b)

we find after some algebra that

eπLi j Lkℓe−πLi j

=
[
1 − 2(Eii + E j j)

]
Lkℓ

[
1 − 2(Eii + E j j)

]
=

(
1 − 2

(
δik + δiℓ + δ jk + δ jℓ

)
+ 4

(
δikδ jℓ + δiℓδ jk

))
Lkℓ

i, j
= (1 − 2δik − 2δiℓ)

(
1 − 2δ jk − 2δ jℓ

)
Lkℓ.

(58)

We observe that, since i < j and k < ℓ, the prefactors in
front of Lℓk are ±1, and thus eπLi j Lkℓe−πLi j = ±Li j is, up to a
sign, one of the basis elements of so(N). Applying the algebra
isomorphism, this gives

eπLi j Lkℓe−πLi j = (1 − 2δik − 2δiℓ)
(
1 − 2δ jk − 2δ jℓ

)
tkℓ, (59)

which is an element of spin(N).
On the other hand, an explicit calculation [e.g., via a re-

peated application of Eqs. (27) and (28)] reveals that for i < j
and k < ℓ

(2ti j)tkℓ(−2ti j) = (1 − 2δik − 2δiℓ)
(
1 − 2δ jk − 2δ jℓ

)
tkℓ, (60)

where tkℓ ∈ spin(N) and eπLi j = 2ti j ∈ PN Noting that
(2ti j)−1 = −2ti j, we observe that the right-hand sides of
Eqs. (59) and (60) are equal, such the left-hand sides must
be equal as well. □

Lemma C.2. Let A ∈ SO(N) be close to the identity and
D ∈ PN , then DAD−1 ∈ SO(N) is close to the identity as well,
and

DAD−1 = D A D
−1
, (61)

with D defined as follows: Any D ∈ PN can be written as

D =
∏
i< j

(eπLi j )di j (62)

for a (non-unique) set of {di j}, di j ∈ {0, 1}, then

D ≡
∏
i< j

(2ti j)di j , (63)

where the ordering of the factors in Eq. (63) matches the or-
dering in Eq. (62).

Let us remark that while A is given by Eq. (32), D needs
to be defined explicitly, since D is not an element close to the
identity.

Proof. Obviously, any D ∈ PN can be written as a (non-
unique) product of generators:

D =
∏
i< j

(eπLi j )di j , (64)

where di j ∈ {0, 1}. First we consider Lkℓ ∈ so(N), then

DLkℓD−1 = eπLi′ j′ · · · eπLi j Lkℓe−πLi j · · · e−πLi′ j′ , (65)

where only eπLi j with i < j and di j = 1 appear in the product.
This is just consecutive conjugation by generators of PN and,
by Lemma C.1, the result of each conjugation is an element of
so(N) again, such that DLkℓD−1 ∈ so(N) and

DLkℓD−1 = DtkℓD
−1
, (66)

where

D ≡
∏
i< j

(eπti j )di j =
∏
i< j

(2ti j)di j . (67)

Now, any A ∈ SO(N) close to the identity can be expanded
in so(N):

A ≈ 1 +
∑
k<ℓ

αkℓLkℓ. (68)

Therefore,

DAD−1 = 1 +
∑
k<ℓ

αkℓDLkℓD−1 (69)

is an element of SO(N) close to the identity and we can lift it
to Spin(N) following Eq. (32), resulting in

DAD−1 = 1 +
∑
k<ℓ

αkℓDtkℓD
−1

(70)

= D

1 +∑
k<ℓ

αkℓtkℓ

 D
−1
= D A D

−1
. (71)
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It remains to be shown that conjugation with D is indepen-
dent of the choice of {di j} (among the ones that give the same
D) and their order. But this follows immediately, because the
effect of conjugation with one factor in D amounts to just a
single prefactor ±1 [cf. the text following Eq. (58)] which is
identical to the prefactor resulting from the conjugation with
the corresponding factor in D [cf. Eq. (60)]. If two choices of
{di j} represent the same D, then in particular the overall pref-
actor is the same and thus the results of conjugating with the
two versions of D match. □

Note that D ∈ PN < Spin(N) and it covers D, i.e.,

σ
(
D
)
= D, (72)

which follows directly from the definition of D and Eq. (48).

We now extend the above results to conjugation with an
element of PNh.

Lemma C.3. Let Lkℓ (k < ℓ) be a basis element of so(N), then
(1 − 2Eii)Lkℓ(1 − 2Eii) ∈ so(N) and

(1 − 2Eii)Lkℓ(1 − 2Eii) = ϵitkℓϵ−1
i ∈ spin(N), (73)

where ϵi is the corresponding generator of Cℓ0,N .

Proof. First observe that

(1− 2Eii)Lkℓ(1− 2Eii) = [1 − 2 (δik + δiℓ]) Lkℓ ∈ so(N). (74)

On the other hand, we find that

ϵitkℓ(−ϵi) = [1 − 2 (δik + δiℓ)] tkℓ, (75)

which implies that

(1 − 2Eii)Lkℓ(1 − 2Eii) = ϵitkℓ(−ϵi) ∈ spin(N). (76)

Note that ϵ−1
i = −ϵi, because ϵ2i = −1. □

Lemma C.4. Let A ∈ SO(N) be close to the identity and
P ∈ PNh, then PAP−1 ∈ SO(N) is close to the identity as well,
and

PAP−1 = P A P
−1
, (77)

where P is defined as

P ≡ ϵ(1−det(P))/2
1 D (78)

for D ≡ (1−2E11)(1−det(P))/2P ∈ PN and D is defined according
to Eq. (63).

Note that P must be explicitly defined because P is not close
to the identity, implying that P has a sign ambiguity. This
ambiguity is irrelevant for Eq. (77), because the ± sign ap-
pears twice and therefore cancels. Nevertheless, for concrete-
ness we opt to work with the particular choice of sign fixed by
Eq. (78).

Proof. Obviously, for any P ∈ PNh,

D ≡ (1 − 2E11)(1−det(P))/2P ∈ PN , (79)

because

det(D) = (−1)(1−det(P))/2 det(P) = det(P)2 = +1. (80)

If det(P) = +1, then D = P and the statement of the
Lemma C.4 reduces to the already proved Lemma C.2. On
the other hand, if det(P) = −1, we have D = (1 − 2E11)P and

PAP−1 = (1 − 2E11)DAD−1(1 − 2E11). (81)

Lemma C.2 implies that B ≡ DAD−1 ∈ SO(N) is close to the
identity and B = D A D

−1
, such that we only need to prove

that for any B ∈ SO(N) close to the identity (1 − 2E11)B(1 −
2E11) ∈ SO(N) is close to the identity and

(1 − 2E11)B(1 − 2E11) = ϵ1Bϵ−1
1 . (82)

But this follows from Lemma C.3 with analogous arguments
as those used in the proof of Lemma C.2 □

Note that given some P ∈ PNh as a matrix

P = diag (p1, p2, . . . , pN) =
∏

i : pi=−1

(1 − 2Eii) (83)

with pi ∈ {±1} we can use Lemma C.3 to conclude that the P
defined above has the canonical parametrization

P =
∏

i : pi=−1

ϵi, (84)

which is obtained by replacing each factor of (1−2Eii) with ϵi.
The choice of sign mentioned above now corresponds to fix-
ing the ordering of the factors in Eq. (84). Here we choose
the convention that in Eqs. (83) and (84) factors with smaller
indices appear to the right.

Finally, we consider the conjugation of an element of PN

with an element of PNh.

Lemma C.5. Let d ∈ PN and p ∈ PNh, then

pdp
−1 = s(d, p)d (85)

with s(d, p) ∈ {−1,+1}.

Proof. First we recall from Sec. I B that any d ∈ PN can be
written as

d =
∏
k<ℓ

(−ϵkϵℓ)dkℓ (86)

for some (non-unique) dkℓ ∈ {0, 1} and any p ∈ PNh can be
written as

p = ϵ
p0
1

∏
i< j

(−ϵiϵ j)pi j (87)
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for p0 ∈ {0, 1} and some (non-unique) pi j ∈ {0, 1}, where
{ϵi}

N
i=1 are the generators of Cℓ0,N .

Equations (28) and (75) imply that for k < ℓ

ϵiϵkϵℓϵ
−1
i = [1 − 2 (δik + δiℓ)] ϵkϵℓ, (88)

such that

ϵidϵ
−1
i =

∏
k<ℓ

[1 − 2 (δik + δiℓ)]dkℓ

︸                          ︷︷                          ︸
=:s(d,ϵi)∈{−1,+1}

d. (89)

Therefore,

pdp
−1 = ϵ

p0
1

∏
i< j

ϵ
pi j

i ϵ
pi j

j

 d
∏

i< j

′

ϵ
−pi j

j ϵ
−pi j

i

 ϵ−p0
1

=

s(d, ϵ1)p0
∏
i< j

(
s(d, ϵi)s(d, ϵ j)

)pi j

︸                                    ︷︷                                    ︸
=:s(d,p)

d,
(90)

where the dashed product indicates reversed order of the
terms. The prefactor s(d, p) is obviously just a sign, because
all the factors s(d, ϵi) are just signs. The independence of this
conclusion and in particular of the prefactor s(d, p) ∈ {±1}
from the parametrization of d and of p follows trivially, be-
cause the left hand side of the above equation is obviously
independent of those parameterizations, and the same is true
for the remainder d on the right-hand side of the equation. □

D. Quaternion invariant

Recall the definition [1, 6] of the quaternion invariant on a
closed path γ (here assumed to be completely contained in the
first Brillouin zone) based at point P. We will in the follow-
ing label the same point as (0, 0) (the numbers do not corre-
spond to the k-space coordinates). It is assumed that there is
no band degeneracy of the N-band real-symmetric Hamilto-
nianHR(k) along γ. We partition the path into infinitesimally
spaced points, which we label (0, 1), (0, 2), . . . , (0, n − 1). The
next point in the sequence is (0, n) ≡ P, i.e., the initial point
again. (The motivation for the additional 0’s in the label for
each listed point will become clear in later paragraphs.)

At each point k on γ we can find the eigenframe [Eq. (11)]
u(k). However, as discussed above, it is not unique and has
the gauge freedom u 7→ uF, where F ∈ PNh. Starting with
an initial right-handed eigenframe u0,0 ∈ SO(N) of HR(P),
we define the eigenframes u0, j ofHR at the subsequent points
such that the rotation u⊤0, ju0, j+1 is close to identity 1 ∈ SO(N).
We will refer to this continuous choice of frame either as a
parallel transport or monodromy of u0,0. In the last step of
the closed path γ, we define u0,0 such that u⊤0,n−1u0,0 is close to
identity; the underline indicates that the final u0,0 is in general
different from the initial u0,0 due to the possible presence of
Berry phases on γ. We denote the gauge transformation that
relates the two eigenframes as Fγ ∈ PN , i.e.

u0,0 = u0,0Fγ. (91)

The quanternion charge is then defined as

q(γ) = u⊤0,0u0,1 · u
⊤
0,1u0,2 · . . . · u

⊤
0,n−1u0,0, (92)

where u⊤0, ju0, j+1 is defined according to Eq. (32), since
u⊤0, ju0, j+1 ∈ SO(N) is close to the identity by construction.
Note that q(γ) implicitly depends on both the base point P of
the closed path γ as well as on the choice of gauge of the initial
eigenframe u0,0.

Let us also establish the notation for the other two paths that
we defined in Conjecture 1. We partition γP,b that connects
P ≡ (0, 0) to P + b ≡ P′ ≡ (m, 0) into infinitesimally spaced
points labelled sequentially as (0, 0), (1, 0), (2, 0), . . . , (m −
1, 0), (m, 0). Note that this path is not closed, P′ , P; in par-
ticular, the Hamiltonians H(P) and H(P′) may differ by the
unitary transformation in Eq. (12).

Furthermore, we partition the shifted (closed) contour γ′

based at P′ into the points (m, j) = (0, j) + b for 1 ≤ j ≤ n.
Note that the energy spectra on γ and γ′ are identical, i.e., by
our previous assumption there is no band degeneracy on γ′.

Analogously to the case of γ, we define the eigenframes
ui,0, 1 ≤ i ≤ m, on γP,b such that the rotation u⊤i,0ui+1,0 is close
to identity 1 ∈ SO(N) (i.e., through parallel transport), and
similarly for um, j, 1 ≤ j ≤ n.

The final frame on γ′, i.e., at P′ after traversing γ′, is related
to the initial frame on γ′ via a gauge transformation Fγ′ ∈ PN
[cf. Eq. (91)]

um,0 = um,0Fγ′ . (93)

Therefore, the eigenframes on γ−1
P,b are not ui,0 and we instead

define new eigenframes ui,0, 1 ≤ i ≤ m, through parallel trans-
port, i.e., such that u⊤i,0ui−1,0 is close to identity 1 ∈ SO(N)
(note the reversed order in the subscript i because the path γP,b
is traversed in reverse). The final frame on γ−1

P,b, defined via
parallel transport as well, is instead denoted by u0,0 to avoid
confusion with the already defined u0,0 [however, we will later
show that u0,0 = u0,0, cf. Eq. (112)]. All the frames on γ−1

P,b are
related to the corresponding frames on γP,b by some gauge
transformation F(i,0) ∈ PN : for 1 ≤ i ≤ m

ui,0 = ui,0F(i,0), (94a)

where F(m,0) = Fγ′ ; for the last point on γ−1
P,b we have

u0,0 = u0,0F(0,0). (94b)

Lemma D.1. Under the assumptions of Conjecture 1, F(i,0)
defined in Eq. (94) and Fγ′ defined in Eq. (93) are equal,

∀0 ≤ i ≤ m : F(i,0) = Fγ′ . (95)

Proof. The statement follows from Eq. (93) due to the mon-
odromy (flatness) of the parallel transport. We construct an
explicit proof via recursion starting from i = m [cf. Eq. (93)].
Assuming F(i+1,0) = Fγ for some 0 ≤ i < m, the frame ui,0 is
defined via parallel transport such that

u⊤i+1,0ui,0 = F⊤γ′u
⊤
i+1,0ui,0F(i,0) (96)
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is close to the identity. On the other hand the frames ui,0, 0 ≤
i ≤ m, are defined such that u⊤i,0ui+1,0 is close to the identity,
which is equivalent to the condition that u⊤i+1,0ui,0 is close to
the identity. Thus, F(i,0) and Fγ′ have to be close, but because
the gauge transformations Fγ′ and F(i,0) are diagonal with ±1’s
on the diagonal, it follows that F(i,0) = Fγ′ . □

Lemma D.2. Under the assumptions of Conjecture 1, Fγ de-
fined in Eq. (91) and Fγ′ defined in Eq. (93) are equal

Fγ′ = Fγ. (97)

The physical interpretation of this result is that the Berry
phases of the individual bands on closed paths γ and γ′ match.

Proof. The gauge transformations Fγ and Fγ′ are defined as
gauge transformations at P and P′, respectively. We can ob-
tain an eigenframe ofH(P+b) from the initial eigenframe u0,0
ofH(P) in two distinct but canonical ways. On the one hand,
through parallel transport we have defined an eigenframe um,0
at P′. On the other hand, the unitary relation through Ub,R
defines the eigenframe Ub,Ru0,0 at P′. These two eigenframes
in general differ by a gauge transformation FP,b ∈ PNh, so we
write

Ub,Ru0,0 = um,0FP,b. (98)

Thus, we have

FP,b = u⊤m,0Ub,Ru0,0. (99)

We emphasize that it is possible for FP,b to have a negative de-
terminant. This happens when an odd number of bands carry
non-trivial Berry phase π in the b direction.

It also follows from the monodromy (flatness) of the paral-
lel transport that

Ub,Ru0, j = um, jFP,b (100)

for all j, such that we can rewrite um, j in terms of u0, j:

um, j = Ub,Ru0, jFP,b
⊤. (101)

For the same reason, i.e., monodromy, an analogous equation
holds for um,0 and u0,0, which are defined via parallel transport
from um,n−1 and u0,n−1, respectively:

um,0 = Ub,Ru0,0F⊤P,b (102)

Together with Eqs. (91) and (101), this gives

um,0 = Ub,Ru0,0FγF⊤P,b
= um,0FP,bFγF⊤P,b. (103)

By comparing Eq. (103) to Eq. (93), we see that Fγ′ =
FP,bFγF⊤P,b. However, since Fγ, Fγ′ and FP,b are all ele-
ments of PNh (i.e., diagonal matrices with ±1 on the diagonal)
and therefore commute with each other, we immediately find
Fγ′ = Fγ. □

Besides the quaternion charge q(γ′), which is defined anal-
ogously to Eq. (92), we now define the total eigenframe rota-
tions along γP,b and γ−1

P,b

b
(
γP,b

)
= u⊤0,0u1,0 · u

⊤
1,0u2,0 · . . . · u

⊤
m−1,0um,0, (104)

b
(
γ−1

P,b

)
= u⊤m,0um−1,0 · . . . · u

⊤
2,0u1,0 · u

⊤
1,0u0,0. (105)

With these definitions, we can proceed to prove several re-
lations between the introduced elements in Spin(N). One
should bear in mind that b

(
γP,b

)
depends not only on the base

point P but also implicitly on the initial frame u0,0; the quater-
nion charge q(γ′) depends implicitly on P, u0,0 and the path
γP,b, while b

(
γ−1

P,b

)
additionally depends on the whole path

γ. Therefore, the following statement only make sense in
the context of Conjecture 1, i.e., when we consider a path
γ̃ = γP,b ◦ γ

′ ◦ γ−1
P,b with base point P, fixed initial frame u0,0.

Lemma D.3. Under the assumptions of Conjecture 1, we have

q(γ′) = FP,bq(γ)FP,b
−1
, (106)

where

FP,b = u⊤m,0Ub,Ru0,0 ∈ PNh (107)

and given the above FP,b, FP,b is defined according to Eq. (78).

Proof. Equation (101) allows us to rewrite the factors in the
definition of q(γ′) [Eq. (92)]: for 1 ≤ j < n − 1

u⊤m, jum, j+1 = FP,bu⊤0, j
(
Ub,R

)⊤ Ub,Ru0, j+1F⊤P,b

= FP,bu⊤0, ju0, j+1F−1
P,b

= FP,b · u
⊤
0, ju0, j+1 · FP,b

−1
,

(108)

where we used that Ub,R and FP,b are orthogonal and applied
Lemma C.4 with FP,b as defined therein. Thus, in q(γ′) all the
FP,b between the factors cancel and we are left with

q(γ′) = u⊤m,0um,1 · u
⊤
m,1um,2 · . . . · u

⊤
m,n−1um,0

= FP,bq(γ)FP,b
−1
,

(109)

as desired. □

Lemma D.4. Under the assumptions of Conjecture 1, we have

b
(
γ−1

P,b

)
= q(γ)−1

b
(
γP,b

)−1
q(γ). (110)

Proof. Applying Lemmas D.1 and D.2 to Eq. (94) gives for
all 1 ≤ i ≤ m that

ui,0 = ui,0Fγ (111)

and

u0,0 = u0,0Fγ = u0,0. (112)
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Substituting Eqs. (111) and (112) into the expression for
b
(
γ−1

P,b

)
in Eq. (105), and applying Lemma C.2, we find for

0 ≤ i ≤ m

u⊤i,0ui−1,0 = F−1
γ u⊤i,0ui−1,0Fγ

= Fγ
−1
· u⊤i,0ui−1,0 · Fγ,

(113)

such that

b
(
γ−1

P,b

)
= Fγ

−1
· u⊤m,0um−1,0 · . . . · u

⊤
1,0u0,0 · Fγ. (114)

Since u⊤i−1,0ui,0 ∈ SO(N) is close to the identity, we can apply
Lemma B.1 and find

u⊤i−1,0ui,0

−1
=

(
u⊤i−1,0ui,0

)⊤
= u⊤i,0ui−1,0. (115)

On the other hand, by inverting Eq. (104) we obtain

b
(
γP,b

)−1
= u⊤m−1,0um,0

−1
· . . . · u⊤1,0u2,0

−1
· u⊤0,0u1,0

−1

Eq. (115)
= u⊤m,0um−1,0 · . . . · u

⊤
2,0u1,0 · u

⊤
1,0u0,0 (116)

and by comparing to Eq. (114) find that

b
(
γ−1

P,b

)
= Fγ

−1
b
(
γP,b

)−1 Fγ. (117)

Additionally, recall that Fγ satisfies

σ
(
Fγ

)
= Fγ (118)

and by the definition of the quaternion invariant in Eq. (92),

σ(q(γ)) = u⊤0,0u0,1u⊤0,1u0,2 . . . u
⊤
0,n−1u0,0 = u⊤0,0u0,0 = Fγ,

(119)
such that, according to Eq. (37),

q(γ) = ±Fγ. (120)

Thus,

b
(
γ−1

P,b

)
= q(γ)−1

bγ−1
P,bq(γ), (121)

because the inverse q(γ)−1 comes with the same sign as q(γ)
and consequently the overall sign ambiguity cancels. □

E. Berry Phases

Lemma E.1. The gauge transformation relating the eigen-
frames at P and P + b with the reciprocal lattice vector b,

FP,b = u⊤m,0Ub,Ru0,0 ∈ PNh, (122)

is given by the Berry phases ϕi of the bands 1 ≤ i ≤ N in the
direction b:

FP,b = diag
(
eiϕ1 , eiϕ2 , . . . , eiϕN

)
. (123)

Proof. Recall the construction of the eigenframes following
the path γP,b. At each of the infinitesimally spaced points
(0, 0), (1, 0), . . . , (m, 0), we find a right-handed eigenframe
ûi+1,0 ∈ SO(N). At P we fix an arbitrary gauge

u0,0 := û0,0 ∈ SO(N) (124)

and then recursively choose the right gauge as follows: given
ui−1,0 the next eigenframe (in the right gauge) is

ui,0 = ûi,0Fi (125)

with Fi ∈ PN such that

u⊤i−1,0ui,0 = u⊤i−1,0ûi,0Fi (126)

is close to the identity. The latter is equivalent to

sign diag
(
u⊤i−1,0ûi,0Fi

)
= 1, (127)

where, given a matrix M, sign diag(M) is the matrix with en-
tries (

sign diag(M)
)
i j = sign(Mii)δi j. (128)

Obviously, for any matrix D ∈ PNh,

[sign diag(M)]D = sign diag(MD), (129a)
D[sign diag(M)] = sign diag(DM), (129b)

such that from Eqs. (127) and (129a) we get

F⊤i = sign diag
(
u⊤i−1,0ûi,0

)
. (130)

Expressing u⊤i,0 from Eq. (125) and using Eq. (129b), we fur-
ther obtain

F⊤i = F⊤i−1 sign diag
(
û⊤i−1,0ûi,0

)
, (131)

which constitutes a recursion relation for the gauge transfor-
mations Fi.

With F0 = 1 [cf.Eq. (124)], the above recursion relation
has solution

F j =

j∏
i=1

sign diag
(
û⊤i,0ûi−1,0

)
, (132)

where factors with smaller i appear to the right (note also the
reversed ordering of the ûi,0 in each factor due to the transpo-
sition). Then, according to Eq. (125)),

um,0 = ûm,0

 m∏
i=1

sign diag
(
û⊤i,0ûi−1,0

) , (133)

such that

FP,b =

 m∏
i=1

sign diag
(
û⊤i−1,0ûi,0

) û⊤m,0Ub,Rû0,0. (134)
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where factors with smaller i appear to the left. Note that FP,b ∈

PNh, such that we can apply Eq. (129a) with M = û⊤m−1,0ûm,0
and D = FP,b and obtain

FP,b =

m−1∏
i=1

sign diag
(
û⊤i−1,0ûi,0

)×
× sign diag

(
û⊤m−1,0ûm,0û⊤m,0Ub,Rû0,0

)
. (135)

Orthogonality of ûm,0 finally gives

FP,b =

m−1∏
i=1

sign diag
(
û⊤i−1,0ûi,0

) sign diag
(
û⊤m−1,0Ub,Rû0,0

)
,

(136)
where again factors with smaller i appear to the left.

Next, we consider the Berry phase ϕ j of the jth band along
γP,b. It can be defined in terms of the Wilson operatorW j as
follows. Let u(i)

j be the jth column of the eigenframe ûi,0, i.e.,
the jth eigenvector of the real Bloch Hamiltonian at the point
(i, 0) (in an arbitrary gauge), then

W j
(
γP,b

)
=

(
Ub,Ru(0)

j

)⊤∣∣∣∣(Ub,Ru(0)
j

)⊤
u(m−1)

j

∣∣∣∣
m−1∏

i=1

u(i)
j

(
u(i)

j

)⊤∣∣∣∣(u(i)
j

)⊤
u(i−1)

j

∣∣∣∣
 u(0)

j

(137)
where factors with smaller i appear to the right, and we con-
tinue to assume the limit of a partitioning into infinitesi-
mal steps. Rearranging the terms, we arrive at (factors with
smaller i still appear to the right)

W j
(
γP,b

)
=

(
Ub,Ru(0)

j

)⊤
u(m−1)

j∣∣∣∣(Ub,Ru(0)
j

)⊤
u(m−1)

j

∣∣∣∣
m−1∏

i=1

(
u(i)

j

)⊤
u(i−1)

j∣∣∣∣(u(i)
j

)⊤
u(i−1)

j

∣∣∣∣
 . (138)

SinceW is a number, it is its own transpose and we find

W j
(
γP,b

)
=

m−1∏
i=1

(
u(i−1)

j

)⊤
u(i)

j∣∣∣∣(u(i−1)
j

)⊤
u(i)

j

∣∣∣∣


(
u(m−1)

j

)⊤
Ub,Ru(0)

j∣∣∣∣(u(m−1)
j

)⊤
Ub,Ru(0)

j

∣∣∣∣ , (139)

where factors with smaller i now appear to the left because
of the transposition. Each factor is just a phase, and because
the eigenvectors are real (by assumption) this implies that it
is a just a sign. Assuming that the points along the path are
sufficiently close, the denominators are all close to 1 and we

can rewrite the Wilson operator as

W j
(
γP,b

)
=

m−1∏
i=1

sign
((

u(i−1)
j

)⊤
u(i)

j

)×
× sign

((
u(m−1)

j

)⊤
Ub,Ru(0)

j

)
. (140)

We observe that(
û⊤i−1,0ûi,0

)
j j
=

(
u(i−1)

j

)⊤
u(i)

j , (141)

such that (
FP,b

)
i j =Wiδi j. (142)

With the definition of the Berry phase,Wi = eiϕi , the desired
Eq. (123) follows. □

F. Proof of Conjecture 1

We can finally prove Conjecture 1.

Proof. By definition, the quaternion charge of γ̃ is

q(γ̃) = b
(
γP,b

)
q(γ′)b

(
γ−1

P,b

)
(143)

and using Lemmas C.5, D.3 and D.4, this gives

q(γ̃) = b
(
γP,b

)
FP,bq(γ)FP,b

−1︸            ︷︷            ︸
=s

(
q(γ),FP,b

)
q(γ)

q(γ)−1
b(γP,b)−1

q(γ)

= b
(
γP,b

)
s
(
q(γ), FP,b

)
q(γ)q(γ)−1︸      ︷︷      ︸

=1

b(γP,b)−1
q(γ)

= b
(
γP,b

)
b(γP,b)−1︸              ︷︷              ︸ s

(
q(γ), FP,b

)
q(γ)︸               ︷︷               ︸

=FP,bq(γ)FP,b
−1

= FP,bq(γ)FP,b
−1

(144)

with FP,b defined according to Eq. (78), given

FP,b = u⊤m,0Ub,Ru0,0 ∈ PNh. (145)

But according to Lemma E.1

FP,b = diag
(
eiϕ1 , eiϕ2 , . . . , eiϕN

)
. (146)

where ϕi ∈ {0, π} is the Berry phase of the ith band in the
direction b and, according to Eq. (84),

FP,b =
∏

i : eiϕi=−1

(1 − 2Eii) =
∏

i : eiϕi=−1

ϵi, (147)

as desired. The ordering of the product in Eq. (147) is fixed by
the convention in Lemma E.1 such that ϵi with smaller i appear
to the right. Without fixing the ordering in the product, there
would be a sign ambiguity in FP,b, because FP,b is not close
to the identity. However, note that in Eq. (144) FP,b appears
twice, such that result holds for both choices of the sign. □
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