
PHYSICAL REVIEW B 106, 085129 (2022)

Universal higher-order bulk-boundary correspondence of triple nodal points
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Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian
eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires
two ingredients: rotational symmetry of order three, four, or six; combined with mirror or space-time-inversion
symmetry. However, despite ample studies of their classification, robust boundary signatures of triple nodal
points have until now remained elusive. In this work, we first show that pairs of triple nodal points in semimetals
and metals can be characterized by Stiefel-Whitney and Euler monopole invariants, of which the first one is
known to facilitate higher-order topology. Motivated by this observation, we then combine symmetry indicators
for corner charges and for the Stiefel-Whitney invariant in two dimensions with the classification of triple
nodal points for spinless systems in three dimensions. The result is a complete higher-order bulk-boundary
correspondence, where pairs of triple nodal points are characterized by fractional jumps of the hinge charge. We
present minimal models of the various species of triple nodal points carrying higher-order topology, and illustrate
the derived correspondence on Sc3AlC which becomes a higher-order triple-point metal in applied strain. The
generalization to spinful systems, in particular to the WC-type triple-point material class, is briefly outlined.
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I. INTRODUCTION

The hallmark feature of higher-order topological phases in
d dimensions is the presence of an anomaly on boundaries
with dimensions d − 2 or lower [1–23]. In two dimensions
(2D), second-order crystalline topological insulators require
additional chiral symmetry or particle-hole symmetry to pro-
tect zero-energy corner modes [11,24–26]. If such symmetries
are absent and the corner modes merge into the bulk en-
ergy bands, the nontrivial second-order topology is instead
revealed by a corner-induced filling anomaly [3,27–29], i.e.,
an obstruction to simultaneously satisfying charge neutrality
and preserving the crystalline symmetries in the presence
of corners. In particular, if the valence bands are filled and
the crystalline symmetry preserved, the filling anomaly im-
plies corner-localized charges. Remarkably, in the presence
of rotational symmetry, the corner charges acquire fractional
quantized values that can be predicted [28,30,31] using sym-
metry indicators [32–39], i.e., symmetry eigenvalues of the
occupied bands at high-symmetry points (HSPs) in the Bril-
louin zone (BZ).

The notion of higher-order topology has recently been gen-
eralized to three-dimensional (3D) nodal phases with twofold
and fourfold degeneracies, resulting in higher-order Weyl
[40–44] and Dirac [9,45–47] semimetals, respectively, as well
as to a class of nodal-ring semimetals obtained by perturbing
Dirac degeneracies [48]. Such semimetals can be understood
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as 2D topological insulators which are augmented by a third
dimension along which the higher-order topology changes,
with the band nodes marking the occurrence of higher-order
phase transitions. Correspondingly, higher-order topological
semimetals are characterized by zero-energy hinge states (in
the presence of chiral symmetry) or fractional hinge charges
(in their absence) for a range of momenta demarcated by the
band degeneracies. In light of these observations, a question of
timely interest arises, namely, whether the phenomena associ-
ated with higher-order topology also extend to more intricate
species of band nodes.

Triple nodal points [49–58] [triple points (TPs) for short]
are threefold degeneracies of energy bands occurring at points
in momentum space, and therefore constitute intermediates
between Weyl and Dirac points. They occur on high-
symmetry lines (HSL) in the BZ when a twofold-degenerate
band [corresponding to a 2D irreducible corepresentation
(ICR) of the HSL’s little cogroup and forming what we call the
central nodal line (NL)] is crossed by a third nondegenerate
band [one-dimensional (1D) ICR of the little cogroup] [51]. In
some cases, TPs are accompanied by additional NL arcs that
lie off the rotation axis but coalesce with the central NL at
a nexus point [59]. Triple points are thus classified [49,58–
60] as type B if a nexus point coincides with the TP and
as type A otherwise (where the appearance of a nexus point
near the TP is optional). TPs were shown by angle-resolved
photoemission spectroscopy to exist in the band structure of
MoP [53] and WC [54].

In contrast to Weyl and Dirac points, a single TP generi-
cally results in a metallic state, due to the imbalance between
the degeneracy of the crossing bands. However, pairs of TPs,
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TABLE I. Symmetry conditions to realize type-A vs type-B triple points (TPs) along a high-symmetry line (HSL) in the momentum space
of spinless systems. The table compactly displays all magnetic point groups (MPGs) that (1) preserve one momentum component (such that
the MPG corresponds to a little cogroup along some HSL), and that (2) support both 1D and 2D irreducible corepresentations (ICRs). The
columns and the rows indicate generators of the MPG, where Cn is rotational symmetry of order n, PT is space-time inversion symmetry, and
mv is mirror symmetry with respect to a plane containing the rotation axis; furthermore, CnPT corresponds to a composition of rotoinversion
CnP with time reversal T . For brevity, we call CnPT the antiunitary rotational symmetry of order n. For each entry, the corresponding MPG
is first labeled per the notation of Ref. [64], and subsequently by the Hermann-Mauguin notation [65]. The last row in each cell indicates the
possible TP types; in certain hexagonal cases both type-A and type-B TPs are possible, depending on the specific choice of ICRs as specified in
Table II. The three MPGs colored in gray violate condition (2) and are therefore dismissed; the remaining 13 MPGs support TPs along HSLs,
and are analyzed in the paper. The classification of TPs for all cases appears in Ref. [59]. In the derivation of the higher-order bulk-boundary
correspondence, we exploit that the cases without PT correspond to subgroups of the cases with PT . Similarly, the C3 column corresponds to
a subgroup of both the C6 and the C6PT columns.

Trigonal Tetragonal Hexagonal

Generators: ↓ and → C3 C4 C4PT C6 C6PT

16.1.60 9.1.29 10.3.34 21.1.76 22.3.81
∅ (3) (4) (4̄′) (6) (6̄′)

– – A – A

17.3.64 11.4.38 23.4.85
PT (3̄′) (4/m′) (6/m′)

B A A and B

19.1.68 13.1.44 14.3.50 25.1.91 26.4.98
mv (3m) (4mm) (4̄′2′m) (6mm) (6̄′m2′)

B A A A and B A

20.3.73 15.3.55 27.3.102
{PT , mv} (3̄′m) (4/m′mm) (6/m′mm)

B A A and B

formed when the 2D ICR consecutively crosses two 1D ICRs,
can result in a semimetal with small Fermi pockets. We call
such a TP configuration a triple-point pair (TPP). These
nodal features can arise both in spinful [49] and spinless
[51,60] systems; however, although there have recently been
several efforts [59–63] towards their topological description
and symmetry classification, it has remained an open question
whether TPs or TPPs can be characterized by robust boundary
signatures.

In this work, we answer both postulated questions in a
single stroke: semimetallic TPPs are generally characterized
by a higher-order bulk-boundary correspondence; namely,
each species of TPP can be assigned a unique value of
fractional jump of the hinge charge. We derive the exact corre-
spondence by combining the symmetry classification of TPs
[59,60] with the symmetry indicators of higher-order topol-
ogy. Note that while we explicitly consider only TPs occurring
in spinless systems, our mathematical analysis based on sym-
metry indicators can be easily generalized to the spinful case
too. Nonetheless, the spinless setting allows us to provide a
complementary geometric interpretation of the higher-order
topology. Specifically, in the presence of space-time inversion
(PT ) symmetry, non-Abelian band topology [66] in combi-
nation with the known properties of certain monopole and
linking invariants [19,67–71], readily provide the result for the
bulk-hinge correspondence for a subclass of TPPs in spinless
systems.

Stable TPs can arise along HSLs with 13 distinct little
cogroups. On the one hand, TPs can be protected if rotational
symmetry Cn of order n ∈ {3, 4, 6} is supplemented with PT
or with mirror symmetry mv with respect to a plane con-

taining the rotation axis or with both PT and mv . On the
other hand, the combined symmetry CnPT (which we call
antiunitary rotation) of order n ∈ {4, 6} can stabilize TPs with
or without the PT and mv symmetries. We provide an easily
navigable summary of all admissible symmetry combinations
and of their subgroup-supergroup relations in Table I. Non-
symmorphic symmetries do neither affect the possible little
cogroups of HSLs along which stable TPs can arise nor the
classification of those TPs [59], which is reflected in the fact
that the symmetries listed in Table I are elements of the little
cogroup, i.e., point-group symmetries.

The diverse range of symmetry combinations seemingly
complicates the analysis. However, it turns out that all the
cases of interest can be obtained by a proper perturbation
of a system with PT symmetry. Therefore, our approach to
analyze the topological invariants and the bulk-hinge corre-
spondence of TPPs is to first deal with the PT -symmetric
cases, and afterwards consider the effect of perturbations to
derive the results also for the PT -broken cases. In partic-
ular, in the presence of PT we can characterize the TPP
also by a second Stiefel-Whitney (2SW) or Euler monopole
charge, of which the first one provides further insights into
the bulk-hinge correspondence [19,22]. Our results for the
correspondence between TPPs, and their associated fractional
jump in the hinge charge, and (if also defined) their 2SW
and Euler monopole charge, are summarized in Table II. The
results also apply to nonsymmorphic space groups (SGs) with
an appropriate identification of ICRs [59].

The paper is organized as follows. In Sec. II, we present
a concrete C4-symmetric tight-binding model that illustrates
the phenomenology of TPP-induced higher-order topology,

085129-2



UNIVERSAL HIGHER-ORDER BULK-BOUNDARY … PHYSICAL REVIEW B 106, 085129 (2022)

including both the hinge-charge jump and the 2SW monopole
invariant. This motivates our study and sets the stage for
the subsequent general discussion. First, Sec. III discusses
monopole charges induced by type-A TPs in PT -symmetric
spinless systems using simple manipulations with the non-
Abelian band topology. The analysis reveals that pairs of
TPs in three-band models can be characterized by the Eu-
ler monopole charge, while TPPs in four-band models can
carry the 2SW monopole charge. The discussion is then
substantially generalized in Sec. IV, where we use sym-
metry indicators to establish the main result of our work:
a general bulk-hinge correspondence principle for TPPs in
spinless systems. As intermediate results, we are led to
also derive symmetry-indicator formulas for the 2SW and
Euler monopole charge in the presence of rotational sym-
metry and a bulk-corner correspondence principle for the
former, and we analyze the effect of symmetry breaking on
TPPs. For simplicity, we first focus on symmorphic SGs and
discuss the generalization to nonsymmorphic SGs only in
Sec. VII.

After presenting the main results of our theoretical analy-
sis, we apply the theory to concrete models. First, in Sec. V,
we demonstrate the derived bulk-hinge correspondence on
minimal tight-binding models for various TPP species. We
first revisit the C4-symmetric model from Sec. II and then
discuss concrete Hamiltonians for the C6- and C3-symmetric
cases. Next, we consider two material examples in Sec. VI.
On the one hand, we consider Sc3AlC in large uniaxial strain
to provide a solid-state illustration of TPPs with the predicted
fractional hinge-charge jump. On the other hand, we show that
Li2NaN under ambient conditions has a pair of TPs carrying
a nontrivial Euler monopole charge, and we briefly discuss
the consequences of this topological obstruction on the sta-
bility of the band nodes. In Sec. VII, we first explain how
the symmetry-indicator formulas for the corner charge can be
applied to compute the fractional hinge charge in a wire ge-
ometry even for nonsymmorphic SGs and then argue that the
bulk-hinge correspondence of TPPs generalizes to nonsym-
morphic SGs. Then, in Sec. VIII we present a short digression
to TPPs in spinful systems, and argue that strongly spin-orbit-
coupled compounds in the WC-type crystal structure studied
by Ref. [49] could host the fractional hinge-charge jumps.
Finally, we conclude in Sec. IX by summarizing the main
results and outlining possible extensions of our work to other
nodal configurations.

The main text is accompanied by several Appendixes
which discuss details of our theoretical and numerical anal-
ysis: In Appendixes A and B we summarize our mathematical
derivations that involve the symmetry indicators, in Ap-
pendix C we include details of the presented tight-binding
models and explain how they were systematically constructed,
in Appendix D we present methods to numerically extract
the hinge charges from tight-binding models. Finally, in Ap-
pendix E we discuss the Euler monopole charge from the
perspective of the non-Abelian band topology (significantly
extended in the Supplemental Material [72], where we proof
a conjecture relating the non-Abelian invariant computed on
contours shifted by reciprocal lattice vectors) and illustrate
this on several material examples.

FIG. 1. Features of the model given in Eq. (1). (a) Real-space
unit cell spanned by the lattice vectors a1,2,3 with the four orbitals:
(px, py ) at Wyckoff position 1a and dxy, dx2−y2 at 1c. (b) Single
layer (for fixed z) of the three-dimensional lattice. The blue shaded
regions indicate the projection of the unit cells with the orbitals
indicated in the same colors as in (a). Black lines (where further
symmetry-related lines are dropped to maintain clarity) indicate
the in-plane hopping processes included in the model. (c) Band
structure along the high-symmetry lines. (d) Brillouin zone spanned
by the reciprocal lattice vectors G1,2,3 with high-symmetry points
{�, Z, X, R, M, A} shown. Nodal lines in the first, second, and third
band gaps are displayed in orange, red, and blue color, respectively.
The four triple points of the model are indicated by green arrows in
(c) and (d).

II. HINGE CHARGES INDUCED BY TRIPLE POINTS

To motivate our study of higher-order topology associated
with TPs, we introduce a concrete model and investigate its
phenomenology. The model assumes spinless particles on a
tetragonal lattice (with lattice constants set to a = c = 1 for
simplicity) and has the (symmorphic) SG P4/mmm (No. 123)
with isogonal point group D4h. As illustrated in Fig. 1(a), we
place (px, py) orbitals transforming in the ICR Eu at Wyckoff
position (WP) 1a, and the orbitals dxy and dx2−y2 , transforming
in B1g and B2g, respectively, at WP 1c. The site-symmetry
group of both considered WPs corresponds to the complete
D4h point group.

In the basis (ipx, ipy, dxy, dx2−y2 ), the considered model is
expressed by the Bloch Hamiltonian

H (k) = −[t1+2t2(cos kx+ cos ky+ cos kz )]γ3 + t3(γ14 − γ25)

− t4(cos kx− cos ky)(γ14 + γ25)

+ 2t5 sin kx sin ky(γ15 − γ24)

+ 2
√

2t6

(
cos

kx

2
sin

ky

2
γ1 − cos

ky

2
sin

kx

2
γ2

)
, (1)
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where γ1 = σx ⊗ τx, γ2 = σx ⊗ τz, γ3 = σz ⊗ 1τ , γ4 = σx ⊗
τy, and γ5 = σy ⊗ 1τ are gamma matrices obeying {γa, γb} =
2δab, and γab = i

2 [γa, γb]; Pauli matrices σi act on the WP
degree of freedom, and Pauli matrices τi act on the orbital
degree of freedom at fixed WP. The point group is generated
by a π

4 rotation around the z axis C4z = −diag(iτy,1τ ), a
π rotation around the y axis C2y = −σz ⊗ τz, and inversion
P = −σz ⊗ 1τ . Additionally, the Hamiltonian possesses time-
reversal symmetry T . Note that we have intentionally chosen
the basis of p orbitals to be imaginary, which results in PT =
K , such that the Bloch Hamiltonian is a real matrix [73]. In
real space, Eq. (1) corresponds to the tight-binding model with
in-plane hopping indicated by black lines in Fig. 1(b), whereas
the nonvanishing out-of-plane hopping processes (not illus-
trated) are strictly vertical and intraorbital. We choose the
model parameters such that the p orbitals have lower energy at
all HSPs with the exception of a double-band inversion at �:
t1 = 4, t2 = t6 = −1, t3 = t4 = 1

4 , and t5 = − 1
4 . The resulting

band structure is shown in Fig. 1(c).
The HSL �Z has little cogroup C4v combined with PT ,

corresponding to the magnetic point group (MPG) 4/m′mm
of Table I. The eigenstates of the model in Eq. (1) along �Z
transform according to one 2D ICR E (p like) and two 1D
ICRs B1 and B2 (d like). The degeneracy of p orbitals along
�Z can be interpreted as a NL, which due to the double-band
inversion at � is crossed by the two remaining d-like bands at
four places, kz = ±κ1,±κ2, resulting in two TPPs at (κ1, κ2)
and (−κ2,−κ1), respectively, visible in Fig. 1(d). We observe
that the TPs are not attached to additional NLs lying off the
rotation axis, consistent with the classification in Refs. [59,60]
that predicts all TPs on C4v-symmetric HSLs to be type A. The
only other band degeneracy exhibited by the model is the 2D
ICR along the vertical hinge MA of the BZ, corresponding
to a vertical NL formed by the two unoccupied p-like bands;
however, this NL does not have any effect on the discussed
phenomenology.

To uncover signatures of higher-order topology, we now
consider a nanowire geometry, i.e., a system which is finite in
x and y but infinite in z direction, at half-filling. Thus, only the
momentum kz ∈ [−π, π ] that runs along the fourfold rotation
axis remains a good quantum number and the BZ is reduced
to a hinge Brillouin zone. The considered in-plane termination
is displayed in Fig. 2(a) and is chosen to respect all the sym-
metries of the Hamiltonian. Furthermore, we choose the ionic
charge (2|e| per unit cell to compensate for the half-filling of
the electron bands; e < 0 is the elementary electron charge) to
be placed at the center of the unit cell.

At fixed kz in the hinge BZ we can view the bulk Hamilo-
nian as being described by an effective 2D model Hkz (kx, ky)
on the 2D lattice shown in Fig. 2(a). In Sec. V A, we use
exact diagonalization to study this family of Hamiltonians
Hkz . By computing the charge distribution of all occupied
states for various kz, we observe that the model has vanishing
edge charge (related to vanishing Berry phase of the occupied
bands), and a kz-dependent corner charge (which is interpreted
as a hinge charge of the 3D system) Q�(kz ) plotted as a
blue line in Fig. 2(b). Three regions can be identified: (1)
Q� = e

4 for |kz| < κ1, (2) Q� = 0 for |kz| > κ2, and (3) the
region κ1 � |kz| � κ2 where the bulk is gapless and the corner

FIG. 2. (a) In-plane termination for the nanowire geometry con-
sidered in the main text. The blue shadowed regions denote unit
cells with ionic charge 2|e| placed at the center (black circle). The
electronic orbitals are illustrated as in Fig. 1. To establish terminol-
ogy, we say that the depicted geometry consists of 3.5 × 3.5 unit
cells (cf. Sec. V A). (b) Quantized hinge charges (blue solid line)
identified using exact diagonalization (for details, see Sec. V A), and
second Stiefel-Whitney (2SW) class (yellow dashed line) obtained
from the Wilson-loop winding; both plotted as a function of kz in
the wire geometry. Cuts at fixed kz can each be interpreted as 2D
flakes as shown in (a) that are characterized by a corner charge
Q�(kz ). The edge charge of the model vanishes. For reference, the
bulk band structure along kz for kx = ky = 0 is displayed in gray
with the 1D (2D) degenerate bands plotted by a thin (thick) line.
(c), (d) Wilson-loop spectrum of the two occupied bands in the 2D
BZ for fixed kz = 0 and π , respectively. For kz = 0 (c) we observe a
winding with odd parity, indicating a nontrivial 2SW class.

charge therefore undefined. These regions reflect exactly the
regions defined by which gap the central NL is located in [cf.
Fig. 1(d)]. In particular, we observe a jump of the hinge charge
from region (2) to region (1) by 	Q� = e

4 .
The difference in bulk topology between these regions is

reflected in the Wilson-loop spectrum. Figures 2(c) and 2(d)
show the Wilson-loop spectrum of the occupied bands for
kz = 0, π , respectively. While the former winds once around
the 2D BZ torus, the latter does not. Recall [68] that the parity
of the winding of the Wilson-loop eigenvalues determines the
2SW class. Note that thePT symmetry of the model allows us
to compute the 2SW class for a cut at each value of kz where
the central energy gap is open, plotted as a yellow dashed line
in Fig. 2(b). We thus make the observation that the pair of TPs
separates a region in the hinge BZ with nontrivial 2SW class
and nonvanishing hinge charge e

4 from a region with trivial
2SW class and vanishing hinge charge.

Motivated by the fractional jump of the hinge-charge ob-
served for the model in Eq. (1) and by the jump’s correlation
with the 2SW class, we organize the next sections as follows.
First, in Sec. III we present a geometric discussion that ex-
plains how type-A TPs give rise to nontrivial 2SW (Sec. III A)
and Euler (Sec. III B) monopole charges by appealing to
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the relation between monopole charges and multiband nodal
links. These insights will readily explain the 2SW class ob-
served in this section’s model. In Sec. IV, we then adopt the
method of symmetry indicators and generalize the observa-
tions discussed above to establish a comprehensive bulk-hinge
correspondence for TPPs. Finally, in Sec. V we first revisit this
section’s model in the light of those general results, before
discussing two C6-symmetric examples: one with type-A TPs
and one with type-B TPs.

III. MONOPOLE CHARGES INDUCED BY TRIPLE POINTS

In this section we argue that pairs of type-A TPs in
spinless systems can be imbued with monopole charges.
This conclusion is achieved by adopting the geometric inter-
pretation of monopole charges as linking numbers [70,71].
After presenting the general argument, we apply it to two
specific configurations of type-A TPs: a four-band configu-
ration resulting in a nontrivial second Stiefel-Whitney (2SW)
monopole charge in Sec. III A, and a three-band configuration
resulting in a nontrivial Euler (but trivial 2SW) monopole
charge in Sec. III B. In both cases we elaborate on the im-
plications of the monopole charge on the stability of the NL
segments and on the bulk topology. (NL segments demarcated
by type-B TPs are not easily analyzed through the geometric
method considered in the present section. We address them
using the more general framework of symmetry indicators in
Sec. IV.)

The 2SW class w2 is a stable Z2-valued invariant defined
on a closed 2D manifold with a spectral gap whenever there
is an antiunitary momentum-preserving symmetry squaring to
+1, such as PT or C2T [19]. Note that we require only one
gap, here the principal gap, to be open on the 3D manifold.
The 2SW class remains well defined in the presence of nodes
in other band gaps. On a spherical surface enclosing nodal-
ring degeneracies in 3D, the 2SW class defines a monopole
charge that enhances the stability of the node [67,68,70]. For
2D insulating systems, on the other hand, the 2SW class on
the BZ torus defines a bulk topological invariant of the full
system [19,20,22,70] similar to the Chern number.

The Z-valued fragile extension of the 2SW class, which
can be defined for a two-band subspace separated from the
rest of the spectrum by energy gaps, is the Euler class χ

[68,74,75]. Note that only its absolute value is gauge invariant
[73] (see also Appendix B 3); we will therefore restrict χ to
non-negative values. Under the addition of trivial bands to the
two-band subspace, only the parity of the Euler class is stable
and reduces to the 2SW monopole charge discussed above,
w2 = χ mod 2.

We now investigate the monopole charges associated with
configurations of TPs. For concreteness, in this section we
focus on NL segments that are demarcated by a pair of type-A
TPs (this, in particular, implies the presence of Cn symmetry
with n = 4 or 6 [60]). We will call the energy gap in which that
NL segment is formed the principal gap [73]. To understand
why such NL segments could carry a nontrivial monopole
charge, consider one such NL segment and require that there
are no additional band nodes in the principal gap for the
considered range of kz. Two examples of such configurations

FIG. 3. (a) Two pairs of type-A triple points (TPs, yellow dots)
formed by consecutive triplets of bands. All TPs are protected by
C4 or C6 symmetry with respect to the z axis. In kz direction the
full extent of the Brillouin zone is shown. Nodal lines in the first,
second, and third gaps of a four-band model are shown in orange,
red, and blue, respectively. (b), (c) Closeup of the boxed region in
(a) with the ellipsoid, on which the second Stiefel-Whitney (2SW)
class is computed with respect to the principal (red) band gap, shown
in purple. (c) Multiband nodal links that form after breaking the
rotational symmetry. The red nodal ring carries a nontrivial value of
the 2SW class computed on the purple ellipsoid. By continuity, the
red nodal segment in (b) also carries a nontrivial 2SW class.

are shown in Figs. 3(b) and 5(a), where nodes in the principal
gap are shown in red.

As has been argued in Ref. [60], adding a small Cn-
breaking but PT -preserving perturbation transforms TPs into
multiband nodal links as illustrated in Figs. 3(c) and 5(b)
and 5(c). Crucially, the linked nodal rings are in band gaps
adjacent to each other, and such linking was shown to be in
a one-to-one correspondence [70,71] with monopole charges.
Thus, there potentially is a nontrivial monopole charge on a
surface enclosing the nodal ring of interest [purple ellipsoid
in Figs. 3(c) and 5(b) and 5(c)]. By continuity we can switch
this perturbation off without closing the principal energy gap
on the enclosing surface, which allows us to assign the same
monopole charge also to the original NL segment, i.e., on
the ellipsoid in Figs. 3(b) and 5(a). In the following two
subsections we investigate in detail the implications of the
linking for the bulk topology of the two specified type-A TP
configurations.

A. Second Stiefel-Whitney monopole charge from triple points

We first analyze the four-band configuration with two TPs,
in which case the 2D ICR is transferred from occupied to
the unoccupied bands along a rotation axis (without loss of
generality set to kz) as shown in Fig. 3(b), similar to the case of
the model discussed in Sec. II. We call such a configuration of
TPs a triple-point pair (TPP). It involves three species of NLs,
displayed in the figures in orange, red, and blue according
to increasing band index. The individual TPs correspond to
locations where the 2D ICR transfers from one energy gap to
another. Due to the periodicity in kz, the minimal model of
such a configuration involves two such TPPs [cf. Fig. 3(a)].
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FIG. 4. Relation between a nodal-line segment carrying a non-
trivial second Stiefel-Whitney monopole charge, and a pair of
two-dimensional insulators characterized by the Z2-valued 2SW
class. The black frame represents the complete momentum-space
extent of the Brillouin zone in the two horizontal directions (solid
black lines), but not in the vertical direction (dashed black lines).
(a) The monopole charge of the red nodal-line segment is calculated
on a surface enclosing it (innermost purple ellipsoid), which can be
continuously inflated (second purple ellipsoid) until it fills the whole
BZ in kx and ky directions (purple cuboid). (b) The purple cuboid in
(a) is equivalent to two horizontal planes (actually tori) T1 and T2 at
the appropriate kz values.

Here it is sufficient to consider the upper half of the BZ,
Fig. 3(b), with one (red) NL segment in the principal gap.
Applying the argument outlined above for the purple ellipsoid
shown in the figure, we consider a small perturbation leading
to the multiband nodal link [60] [cf. Fig. 3(c)]. Since one NL
in each of the two adjacent band gaps (first and third) is linked
with the red nodal ring, the purple ellipsoid carries nontriv-
ial 2SW monopole charge w2 = 1 [70]. This has immediate
consequences for the stability of the red NL segment and
thus for the two TPs in Fig. 3(b). In particular, the monopole
charge guarantees the persistence of the red NL even when the
rotational symmetry is broken (and the 2D ICR split) as long
as the PT symmetry is preserved.

We next discuss implications of the monopole charge for
the bulk topology. Assuming there are no additional NLs in
the principal gap in the relevant kz range, the ellipsoid en-
closing the red NL segment can be continuously deformed as
illustrated in Fig. 4(a) until it spans the whole BZ in kx and
ky directions for a finite range of kz. Due to the periodicity in
the BZ, the contributions from opposite vertical faces of that
surface cancel and we are left with the two horizontal planes
T1 and T2 shown in Fig. 4(b). Note that these are actually 2D
tori which can be interpreted as the BZs of certain 2D sys-
tems, namely, ones with the two-dimensional Hamiltonians
Hkz (kx, ky) := H (kx, ky, kz ).

Owing to the continuous deformation of the surface, the
2SW class does not change, such that w2(T1) + w2(T2) = 1
mod 2. Consequently, one of the two planes will be trivial,
w2 = 0, and the other nontrivial, w2 = 1. Viewing them as
2D systems as described above, the latter is a 2D insulator
with nontrivial 2SW class, called Stiefel-Whitney insulator
(SWI) [70]. In the simultaneous presence of C2 rotational and
of chiral symmetry, SWIs were shown [19,22] to have robust
zero-energy corner states accompanied by half-integer corner

charges. Our situation is different: we do not assume chiral
symmetry, and the order of rotational symmetry necessary to
protect type-A TPs is n ∈ {4, 6}. Until now, the (higher-order)
bulk-boundary correspondence for (nonchiral) SWIs with ro-
tational symmetry has not been clarified. We derive this piece
of information in Sec. IV A; in particular, we show that the
corner charge in the presence of trivial (nontrivial) 2SW class
is quantized to even (odd) multiples of e

n . We subsequently
apply the result to study the bulk-hinge correspondence for
TPPs of both type A and type B in Sec. IV C.

B. Euler monopole charge from triple points

An even simpler configuration is obtained in a three-band
model with two type-A TPs formed by the same triplet of
energy bands, as illustrated in Fig. 5(a). Since the ordering
of the ICRs along the rotation (kz) axis has to be the same at
both kz = −π and π due to the periodicity of the momentum
space, it again follows that the number of TPs formed by the
three bands is even. In the minimal model, the NL changes
the band gap twice, once from the second (blue) to the first
(red) and once back to the second gap, at two TPs (yellow
dots). Here we assume a single occupied and two unoccupied
bands, such that the two-band subspace allows us to define
the Euler monopole charge χ ∈ Z on the purple ellipsoid in
Fig. 5(a) [68].

The Euler monopole charge of a nodal ring is determined
by the linking with NLs in the adjacent band gap, similar
to the case of the 2SW class, such that we can again apply
the argument with the breaking of the rotational symmetry.
However, here the orientation of the linked NLs becomes
important [71]. Recall that in a generic multiband setting the
orientation of a NL can be formally defined via the non-
Abelian generalized quaternion invariant [66]. In particular,
this orientation obeys the same noncommutative rules as the
winding number of point nodes in 2D as reported by Ref. [19],
allowing us to interpret the NLs as braid trajectories. The
orientation [indicated by arrows in Figs. 5(b) and 5(c)] of
the adjacent (blue) NL at the point where it crosses the disk
bounded by the principal (red) nodal ring determines the flux
±1, indicated in gray. We observe that two distinct scenarios
can arise after breaking the rotational symmetry: Fig. 5(b)
where the total flux vanishes, and Fig. 5(c) where it is non-
vanishing. According to Ref. [71] the former implies χ = 0
and the latter |χ | = 2.

While we have so far only established the possibility of the
red NL segment carrying a nontrivial Euler monopole charge,
the two cases χ = 0 and |χ | = 2 can be distinguished based
on the Zak-Berry phases φ2,3 ∈ {0, π} along the kz axis of
the two bands involved in the formation of the blue NL in
the adjacent energy gap, i.e., the NL segment on the opposite
side of the triple point than the segment under consideration.
Assuming the minimal model with only a single pair of TPs
along kz, as shown in Fig. 5, there are in fact only two nodal
rings (the red one in the center, and the blue one on the
boundary), since the two blue NL segments belong to the
same nodal ring, only shifted by a reciprocal lattice vector
b. Notably, the two copies of the blue NL ring do not neces-
sarily exhibit consistent orientations: the orientation of a NL
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FIG. 5. (a) Type-A triple points (yellow dots). The red (blue) line
indicates nodal lines formed by the lower (upper) two bands of a
three-band model. In kz direction the full extent of the Brillouin zone
is shown. (b), (c) Multiband nodal link formed from (a) by breaking
the rotational symmetry protecting the triple points. The flux (gray
±1’s) depends on the orientation of the two blue nodal lines at the
intersection points (gray) with the disk bounded by the red nodal
ring [71]. The total flux vanishes in (b) giving rise to χ = 0, but is
finite in (c) such that |χ | = 2. In the presence of mirror mz : kz �→
−kz symmetry, the difference between the situations (b) and (c) is
reflected in the mirror eigenvalues of the three bands at kz = 0 vs
kz = π (cf. the discussion in Sec. VI B).

between bands 2 and 3 at k + b is reversed compared to the
one at k if and only if φ2 + φ3 = π mod 2π . In Appendix E
(with additional information detailed in the Supplemental Ma-
terial [72]), we formalize this statement in the framework of
the non-Abelian generalized quaternion invariant [66,71]. The
result applies to an arbitrary number of bands and provides
a general transformation rule for the NL orientation between
neighboring BZs depending on the Berry phases.

The orientation reversal can be related to the properties of
Dirac points in 2D derived in Ref. [19] if we consider a 2D cut
[brown plane in Fig. 6(a)] through the BZ that intersects the
blue NLs. Note that continuity implies that the two upper point
nodes [i.e., upper two blue dots in Fig. 6(b)] have opposite
winding number because they correspond to cuts through the
same nodal ring, i.e., they manifestly annihilate when sliding
the plane away from the nodal-link composition. According
to Ref. [19] the copy of the uppermost node with winding
number +1 in an adjacent BZ (bottom-most node), i.e., shifted
by the reciprocal lattice vector b, has winding number (+1)s,
where s = ei(φ2+φ3 ) and φ j is the Zak-Berry phase of band j
on the contour γ winding around the 2D BZ in the direction
of b.

Although the even-valued Euler class is a fragile topo-
logical invariant, it may still imply unusual stability of the
corresponding NL under perturbations, which we briefly
investigate in Sec. VI B. The following Secs. IV and V in-
vestigate in more detail the case of TPs in the four-band
configuration, which may exhibit the stable 2SW class, and
we derive their associated signatures in the fractional hinge
charges.

FIG. 6. (a) Nodal-line (NL) configuration (here colored red vs
blue for NLs formed by the lower vs upper two bands of a three-
band model) in the first Brillouin zone (BZ, black frame) and part
of the second BZ. The two blue displayed NLs are displaced by a
reciprocal lattice vector b (green arrow). The blue NL is intersected
by a 2D plane (pale brown) at two inequivalent points (gray dots).
The shown orientation of the blue NLs is compatible with φ2 + φ3 =
π (cf. Sec. III B). (b) Band nodes (blue points) on the 2D plane in (a),
with winding numbers ±1 inherited from the orientation of the NLs
in 3D. The two upper point nodes have opposite orientation, because
they pairwise annihilate (blue arrows pointing to the gray disk) when
the vertical plane is shifted away from the NL composition. The point
nodes displaced by b have winding numbers differing by a factor
s = ei(φ2+φ3 ) = ±1 [19].

IV. HIGHER-ORDER BULK-BOUNDARY
CORRESPONDENCE

In this section we mathematically establish the higher-
order bulk-boundary correspondence principle foreshadowed
in Sec. II: a triple-point pair (TPP) in a SG with (antiunitary)
rotational symmetry of order n ∈ {2, 3, 4, 6} is generally as-
sociated with a fractional jump of the hinge charge. While
the previous Secs. II and III explicitly considered only type-A
TPs in systems with PT symmetry, the discussion in this
section is more general and encompasses all the TPs reported
by the classification in Refs. [59,60] and reproduced in Ta-
ble I in symmorphic SGs. (We discuss the generalization to
nonsymmorphic SGs in Sec. VII.) Furthermore, we report
a correspondence between the 2SW monopole charge (if it
is defined) of the NL segment connecting the two TPs and
the value of the hinge-charge jump: a trivial 2SW monopole
charge implies a ± e

n jump, while a nontrivial value results
in a jump by ± 2e

n . We remark that the hinge-charge jump
associated with a TPP always occurs without a change in the
bulk polarization. This implies that if there is no fractional
surface charge appearing on one side of the TPP, then there is
also no fractional surface charge on the other side of the TPP,
thus guaranteeing that the fractional jump in the hinge charge
is observable.

We begin in Sec. IV A by discussing the 2D SWI with
Cn-rotational symmetry. Here, we adapt the C2-symmetry-
indicator formula [19] for the 2SW class to Cn-rotational
symmetry, where n ∈ {4, 6}, and show that the value of the

085129-7



PATRICK M. LENGGENHAGER et al. PHYSICAL REVIEW B 106, 085129 (2022)

2SW class constrains the possible fractional corner charges of
the Cn-symmetric 2D system with vanishing bulk polarization.
Subsequently, by temporarily adopting a stronger assumption
on energy gaps in the band structure, we derive in Sec. IV B a
symmetry-indicator formula for the Euler monopole charge of
TPPs in the presence of Cn rotational symmetry. In Sec. IV C,
we combine the results obtained in the previous two sub-
sections with the classification of TPPs to derive the general
bulk-hinge correspondence principle for all possible TPP con-
figurations in PT -symmetric systems. Finally, in Sec. IV D,
we discuss the effect of breaking various symmetries; in par-
ticular, we extend the bulk-hinge correspondence principle to
TPPs protected by all MPGs listed in Table I. Our results
for the bulk-hinge correspondence are compactly summarized
in Table II, while Table III compiles the various topological
phase transitions induced by symmetry breaking.

A. Stiefel-Whitney insulator with rotational symmetry

We consider an insulating 2D system with C2T and Cn

symmetry, where C2 and Cn are with respect to the same axis
perpendicular to the system. Due to the C2T symmetry (where
C2 acts like inversion in 2D) the insulator is characterized
by the 2SW class, while the Cn symmetry implies fractional
corner charges [28–30] if the edge charge vanishes. For sim-
plicity we assume that all the positive ionic charge, which
compensates for the negative charge of the filled electron
bands, is located at the maximal Wyckoff position 1a, i.e., the
center of the square unit cell. In Sec. IV C we will see that
for n = 3, the 2SW class is not symmetry indicated. Thus, we
restrict the present discussion to n = 4, 6, which implies that
C2 and T symmetry are also symmetries of the system.

In the following we use symmetry indicators to derive con-
straints on the corner charges due to a nontrivial 2SW class.
We adopt the notation of Ref. [28], where the eigenvalues
of the Cn-rotation operator at the Cn-symmetric HSP � for
spinless particles are denoted by

�(n)
p = e2π i(p−1)/n, p = 1, 2, . . . , n (2)

and define the quantities[
�(n)

p

] = #�(n)
p − #�(n)

p , (3)

where #�(n)
p and #�(n)

p are the number of occupied energy
bands with eigenvalue �(n)

p at HSPs � and �, respectively.
For C4 we have HSPs �, X , and M, while for C6 they are �,
M, and K . Then, assuming the specific geometries of the 2D
crystals shown in Fig. 7(a), the corner charges are given by
[30]

Q(4)
� = e

4

(∓[
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
mod e, (4a)

Q(6)
� = e

4

[
M (2)

1

] + e

6

[
K (3)

1

]
mod e, (4b)

where e < 0 is the electron charge and the sign in front of
[X (2)

1 ] depends on whether the center of the C4-symmetric
crystal is located at Wyckoff position 1a (upper sign) or 1b
(lower sign). Note that, consistent with the assumptions in
the present discussion, Eq. (4) assumes the presence of time-
reversal symmetry T with T 2 = +1; if T is not a symmetry,
Eqs. (A2) and (A3) should be used instead.

FIG. 7. (a) The Cn-symmetric cross-section geometries for which
the hinge charges are defined, and for which the values listed in
Table II apply. The corners (gray regions) in the cross sections cor-
respond to the hinges in the 3D system. (b) Deformation of the
C6-symmetric sample (inner hexagon) to a C3-symmetric sample
(outer triangle). Two corners (blue and green) of the hexagon with
corner charges Qa

� and Qb
� merge into a single corner (red) of the

triangle with corner charge Qab
� = Qa

� + Qb
�.

Since both C4 and C6 symmetries imply the presence of
C2 symmetry, we can also consider the symmetry-indicator
formula for the 2SW class [70], namely,

w2 =
∑

�∈TRIM

⌊
1

2
#�

(2)
2

⌋
mod 2, (5)

where the sum is over the four time-reversal-invariant mo-
menta (TRIM) in the BZ (these are exactly the C2-invariant
momenta) and 
·� is the floor function. In Appendix A 2 we
show that in the presence of an enlarged rotational symmetry,
the 2SW class can be equivalently written as

C4 : w2 = [
M (4)

2

]
mod 2, (6a)

C6 : w2 = 1

2

[
M (2)

1

]
mod 2, (6b)

where on the right-hand side we used the same Cn symmetry
indicators that also enter Eq. (4).

Finally, we observe that for vanishing polarization, the
2SW class constrains the corner charge. For n = 4 the polar-
ization vanishes if and only if [X (2)

1 ] = 0 mod 2, while for
n = 6 it always vanishes [28]. Therefore, vanishing polariza-
tion also implies that the center-dependent sign ambiguity in
Eq. (4a) drops from our analysis. Combining the assumption
of vanishing polarization with Eqs. (4) and (6), we show in
Appendix A 2 that the nontrivial value w2 = 1 constrains the
corner charge for C4-symmetric SWIs to

Q(4)
� ∈

{
± e

4

}
mod e (7a)

and for C6-symmetric SWIs to

Q(6)
� ∈

{
± e

6
,

e

2

}
mod e, (7b)

i.e., to odd multiples of e
n , whereas the complementary frac-

tional values correspond to insulators with w2 = 0.
Before applying the presented formulas to study TPPs in

3D, we briefly comment on some relations of the result in
Eq. (7) to previous works. First, note that in the presence
of chiral symmetry, the corner charge can only attain value
0 or e

2 mod e. This can be easily understood as follows. If
the occupied states carry localized corner charge Q mod e,
then (by completeness of the Hilbert space) the unoccu-
pied states carry localized corner charge −Q mod e. Chiral
symmetry is local in real space and maps occupied onto un-
occupied states, therefore guaranteeing that Q = −Q mod e.
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That equation has two solutions: Q = 0, e
2 mod e. On the

other hand, our derivation in Appendix A 2 reveals that the
value w2 = 1 can result in corner charge Q(6)

� = e
2 mod e if

and only if [K (3)
1 ] = 0 mod 6. This is compatible with the

finding of Ref. [76] which showed that chiral symmetry that
commutes with C3 rotation implies [K (3)

1 ] = 0. The value e
2

mod e of the corner charge was also reported in the study
of a SWI model with chiral and C6 symmetry by Ref. [19].
Second, the result in Eq. (7a) implies that the three conditions
(1) C4 symmetry, (2) w2 = 1, and (3) vanishing polarization
are incompatible with (4) the presence of chiral symmetry;
equivalently, SWI with chiral and C4 symmetries must neces-
sarily have gapless edges. This finding is compatible with the
observations of Ref. [48] made in the context of second-order
NL semimetals.

B. Euler monopole charge in presence of rotational symmetry

If the two occupied bands involved in the TPP formation
are separated from lower-lying occupied bands by an energy
gap, the 2SW can be refined to the Euler monopole charge.
Note that this is a different situation from the one discussed in
Sec. III B: here we consider a surface enclosing a TPP, i.e., two
TPs in adjacent band gaps, as shown in Fig. 3(b). Monopole
charges such as the 2SW and the Euler monopole charge can
be inferred from the winding of the Wilson-loop spectrum.
Symmetries constrain the latter [33,77,78] and therefore lead
to symmetry-indicator formulas for the monopole charges. To
our knowledge, no such symmetry-indicator formulas for the
Euler monopole charge in the presence of rotational symme-
try have been previously derived, therefore, we do that here.
Along the way, we identify that TPPs formed by certain com-
binations of ICRs are necessarily associated with extended
NLs in the principal gap, which prevents the system from ex-
hibiting higher-order topological signatures and the monopole
charge from being defined. The details of these derivations are
relegated to Appendix B, while here we only outline the main
steps and results.

To derive the symmetry-indicator formulas, we consider a
spherical surface enclosing part of a HSL with Cn rotational
symmetry in its little cogroup, e.g., containing a TPP, as illus-
trated in Fig. 8(a). We refer to the two points where the sphere
is intersected by the rotation axis as the south and north pole.
Let N and Nocc be the total number of bands and the number of
occupied bands, respectively. We assume the system to have
space-time inversion symmetry PT satisfying (PT )2 = +1,
such that there is a basis in which the corepresentation of
PT is the identity matrix and the Bloch Hamiltonian a real
symmetric matrix. Let further D0 and D1 label the symmetry
representations of the occupied bands in that basis at the
south and north poles of the spherical surface, respectively. In
Appendix B 1 we show that the Wilson-loop operatorW(φ)
computed on the path

�(φ) = γ (φ)−1 ◦ γ (0) (8)

illustrated in green in Fig. 8(a) is constrained by Cn symmetry:

W
(

φ + 2π

n

)
= D0(Cn)P(φ)†D1(Cn)†P(φ)W(φ), (9)

FIG. 8. (a) Definition of the closed contours �(φ) = γ (φ)−1 ◦
γ (0) (green) on which the Wilson-loop operatorW(φ) is computed.
The spherical surface (purple) is covered by these contours as the
argument is increased in the range φ ∈ [0, 2π ). If the surface is not
crossed by any other nodal lines (NLs) than the orange and blue ones,
the Euler monopole charge χ can be defined and is determined by the
winding of the Wilson-loop spectrum. This is the case, for example,
if there are no red nexus points enclosed in the surface. (b) In other
cases, e.g., if there is exactly one red nexus point enclosed, red NLs
crossing the surface are always present. This is indicated by a π

Berry phase on the path �(2π/n), where n is the order of the ro-
tational symmetry. The nontrivial Berry phase implies that �(2π/n)
encircles an odd number of NLs in the principal gap (red NLs), as
illustrated.

where P(φ) ∈ SO(Nocc) is defined by parallel transport [see
Eq. (B17) in Appendix B 1]. Note that in Eq. (8), one first
traverses the path appearing to the right of the composition
symbol “◦.”

For arbitrary Nocc, we consider the implication of Eq. (9)
for the Berry phase of the occupied bands on the contours
�(φ). The Berry phase is given by ϕ = arg detW [79], such
that

ϕ

(
φ + 2π

n

)
= ϕ(φ) + arg det[D0(Cn)D1(Cn)†] mod 2π.

(10)
Due toPT symmetry, 	ϕ = arg det[D0(Cn)D1(Cn)†] is quan-
tized to 0 vs π . If 	ϕ = π , there are an odd number of
NLs in the principal gap crossing the surface in each sector
[φ, φ + 2π/n] [cf. Fig. 8(b)]. This implies that the principal
gap is necessarily closed somewhere on the enclosing surface,
thus preventing one from assigning a monopole charge to the
enclosed TPP. We will see in Sec. IV C that this condition also
prevents the corresponding TPPs from exhibiting the higher-
order signature at the hinges.

In the remainder of this subsection, we call a TPP admis-
sible when the principal gap on the enclosing sphere can be
open. This corresponds to the case with 	ϕ = 0, which is
equivalent to requiring

det[D0(Cn)D1(Cn)†] = 1. (11)

By our initial assumption, the two occupied bands involved
in the TPP are separated from lower-lying occupied bands by
an energy gap on the whole surface, such that we can ignore
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TABLE II. Bulk-hinge correspondence for triple-point pairs (TPPs) in spinless systems. Triple points (TPs) can arise only in crystals with
rotational symmetry Cn (or screw symmetry) of order n ∈ {2, 3, 4, 6}; this fixes the nanowire geometry (see table footnote a) in which we
study the hinge charges. In particular, the TPs occur along high-symmetry lines (HSLs) with little cogroup (LCG) that has the same rotational
symmetry Cn supplemented with space-time inversion (PT ) symmetry or with mirror (mv) symmetry with respect to plane that contains the
HSL or with both PT and mv . Note that Cn may be generated by an antiunitary rotational symmetry Cn/2PT for even n, and that the antiunitary
rotations C4PT and C6PT can stabilize TPs even without additional symmetries. (For an easily navigable summary of all admissible symmetry
combinations supporting spinless TPs, see Table I.) In the second row we indicate representative HSLs with the required rotational symmetry,
which are realized in SGs with a prismatic Brillouin zone (however, the below-listed values of 	Q�, χ , and w2 apply equally to all HSLs with
the specified symmetry). In the third row we indicate the generator of the LCG rotational symmetry, i.e., the maximal (unitary or antiunitary)
rotational symmetry. The next row lists the possible pairs of TP types along the corresponding HSL which can exhibit a gapped spectrum on
both sides of the NL segment (cf. Fig. 10); for the classification of individual TPs in spinless systems into type A vs type B, see Table I or
Ref. [59]. The row labeled by “ICRs” indicates the possible triplets of irreducible corepresentations of the LCG which can form a four-band
TPP (cf. Fig. 9); “any” means that all combinations of a 2D ICR with two 1D ICRs give the same result. The notation for the ICRs follows
Ref. [65], where we drop the subscripts if they do not affect the result. Note that for the 2D ICRs of 6/m′ we define 2E2

1E2 �→ E1 and
2E1

1E1 �→ E2. Finally, we find that each TPP is characterized by a fractional hinge-charge jump 	Q�. If PT symmetry is present, we also
assign the TPPs the Euler |χ | and second Stiefel-Whitney w2 monopole charges. The hinge charges Q� are computed for the geometries
depicted in Fig. 7(a).

Rotational symmetry C2
a C3 C4 C6

Example HSLs �Z, MA �A, KH, K ′H ′ �Z, MA KHb �A
LCG rotation generator C4PT C3 C6PT a C4 C3 C6

TP types (A, A) (B, B) (A, A) (A, A) (B, B) (A, A) (B, B)

(E ; A, A) (E1; A, A) (E1; B, B)ICRs Any Any Any(E ; B, B) (E2; B, B) (E2; A, A)

	Q� mod e e
2 + e

3 + e
4 + e

3 + e
6 − e

3|χ mod n|d – 1 – 1 2 1 2
w2 – 0 or 1c – 1 0 1 0

aFor C4PT (without additional PT ), the largest unitary rotational symmetry is C2. Then, we consider a square geometry, and the quantization
of the hinge-charge jump to e

2 mod e occurs only if summing over two neighboring hinges. For C6PT we consider the C3 (triangular) geometry.
bDue to the double occurrence of the KH line in a C6-symmetric system, the Brillouin zone exhibits two TPPs at the same value of kz. The
indicated values of 	Q� and w2 represent the combined contribution of both of them.
cHere, the second Stiefel-Whitney monopole is not symmetry indicated and both options are possible. For an example of each, see Sec. V D.
dHere we use the convention that a mod n ∈ (−
n/2�, . . . , 
n/2�], such that |a mod n| ∈ {0, 1, . . . , 
n/2�}. This implies that for n = 6 the
value 4 (5) is equivalent to 2 (1), for n = 4 the value 3 is equivalent to 1 and for n = 3 only 0,1 can be distinguished (with 2 equivalent to 1
and therefore with undetermined parity). For further clarification of the ambiguity involved in defining |χ | mod n, see Appendix B 4.

the lower-lying bands and set Nocc = 2. Then, the absence of
nodes in the principal gap implies that the Euler monopole
charge on the sphere is well defined and given by the winding
number of the Pfaffian of the logarithm of W(φ) [73]. In
Appendix B 3, we show that if D0(Cn), D1(Cn) ∈ SO(2), then
Eq. (9) simplifies to

W
(

φ + 2π

n

)
= D0(Cn) D1(Cn)†W(φ). (12)

Since the nth power of D0,1(Cn) gives the identity, it follows
that for j ∈ {0, 1}: Dj (Cn) = e− 2π i

n r j sy with r j ∈ Z and the
Pauli matrix sy acting on the space of the two valence bands.
Then, we extract the following symmetry-indicator formula
for the Euler monopole charge χ :

χ = r1 − r0 mod n. (13)

Note that χ is only gauge invariant up to sign and that the
relevant topological invariant therefore is |χ |.

C. Triple-point configurations with hinge charges

In this section we apply the symmetry-indicator formulas
from Secs. IV A and IV B to study four-band TPP configura-
tions in PT -symmetric systems. While in Sec. III A we have

assumed the TPPs to be demarcated by type-A TPs, we here
generalize to the case of both type-A and type-B TPs. Our
result, summarized by Table II, provides the complete cor-
respondence between TPPs, their 2SW and Euler monopole
charge (if they are defined), and the higher-order signature
in the fractional hinge charge. For simplicity, we first focus
on TPs in crystals with a symmorphic SG and generalize the
results to nonsymmorphic SGs in Sec. VII.

Our analysis is structured as follows. First, based on the
classification result of Refs. [59,60], we know that TPs can
be stabilized in spinless systems on HSLs with trigonal,
tetragonal, or hexagonal symmetry (cf. Table I). Such HSLs
arise in SGs with the corresponding symmetry. For crystals
with Cn symmetry, where n ∈ {2, 3, 4, 6}, some representative
HSLs with the specified symmetry (namely, ones that are
realized in SGs with prismatic BZs), are listed at the top of
Table II (however, the derived bulk-hinge correspondence,
encoded by 	Q�, χ , and w2, applies equally to all HSLs
with the prescribed symmetry). Then, given the little cogroup
of any such HSL, we consider all possible combinations of
ICRs leading to TPPs. Recall that a TPP requires a 2D ICR
(ρ2D) to be crossed consecutively by two 1D ICRs (ρ1D

a
and ρ1D

b ) (cf. Fig. 9), and can thus be characterized by the
triplet (ρ2D; ρ1D

a , ρ1D
b ) (here, the ordering of the 1D ICRs is
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FIG. 9. Convention for defining the jump of the fractional hinge
charge (	Q�) and of the second Stiefel-Whitney monopole (	w2)
associated with a pair of triple points (TP, yellow dots) in a four-band
configuration. The black lines indicate the band structure along a
high-symmetry line, with the 2D irreducible corepresentation (ICR)
ρ2D passing from the bottom (orange) to the central (red) to the upper
(blue) energy gap with increasing momentum kz due to crossing
two 1D ICRs ρ1D

a and ρ1D
b . The green dashed line (μ) indicates

half-filling at various kz. The quantities 	Q� and 	w2 associated
with the TP pair are defined as the characteristics of the 2D cut in
the region where ρ2D is unoccupied (i.e., above μ) from which we
subtract the characteristics of the 2D cut in which ρ2D is filled (i.e.,
below μ). In practice, the physical chemical potential has a value
independent of momentum, and will therefore locally deviate from
the μ defined above. Nevertheless, generically, the system will still
be at half-filling for extended parts of the orange and blue regions
which lie far enough from the TP pair. The differences 	Q� and
	w2 are therefore still well defined and unchanged compared to the
situation with variable μ(kz ).

unimportant). Finally, we apply the symmetry-indicator for-
mulas from Secs. IV A and IV B to derive the higher-order
bulk-boundary correspondence of TPPs, listed in the bottom
of Table II.

Choosing kz along the HSL and taking 2D cuts of the
system at constant kz, we obtain a series of 2D systems
with HamiltonianHkz (kx, ky), which we assume to be at half-
filling. This fixes the principal gap to be the second one (such
that principal nodes are indicated in red, cf. Fig. 9). Upon in-
creasing kz, the system goes from having ρ2D occupied (to the
left of the first TP) to instead having (ρ1D

a , ρ1D
b ) occupied (to

the right of the second TP). Let us refer to the three ranges of
kz separated by the two TPs by the corresponding color of the
central NL as orange, red, and blue kz range. The correspond-
ing band inversions lead to changes in the symmetry indicators
#�(n)

p , and thus potentially alter both the corner charge [cf.
Eq. (4)] and the 2SW class [cf. Eq. (6)] of the 2D cuts. Let
us remark that, in practice, the physical chemical potential of
the 3D system will be constant. However, generally it can be
chosen such that we have half-filling with insulating bulk at
least for some 2D cuts in the orange and blue kz ranges; then,
the jumps will be observable by comparing only kz values
corresponding to those cuts.

We briefly explain how to apply the 2D symmetry-indicator
formulas to 3D systems with PT and arbitrary Cn symmetry.
For concreteness we assume the rotation axis to be along kz.
In this case, any 2D cut perpendicular to kz through the 3D
BZ inherits both of these symmetries. In particular, within
the 2D plane PT acts as (C2T )2D with (C2)2D = C2 being
the rotation around the kz axis, and T2D = PC2T = mzT [49]
being the composition of the physical time-reversal symmetry

with the horizontal mirror symmetry mz : z �→ −z. Note that
the HSPs entering the symmetry-indicator formulas need to
be identified with the intersection of the corresponding HSLs
in the 3D BZ with the chosen 2D plane at fixed kz. For �(n)

we thus need to consider the Cn-invariant HSLs, while the 2D
TRIM correspond to lines invariant under T2D. The computed
corner charges in the 2D cuts therefore imply the correspond-
ing values of hinge charges in the 1D hinge BZ, while the
jump of the 2SW class between two 2D cuts corresponds to
the 2SW monopole charge as we explained in Sec. III A and
illustrated in Fig. 4.

The hinge charge is only well defined for values of kz,
where the bulk of Hkz is gapped and the surface charge
vanishes [28]. Similarly, the monopole charges are only well
defined as long as there is a surface enclosing the TPP that
is not penetrated by NLs in the principal gap (red). While
these conditions generally depend on the model parameters,
we can formulate the following criteria for a gapped bulk,
which conversely implies constraints on the admissible TPP
configurations (to be precise, we call a combination of a 2D
and two 1D ICRs an admissible TPP configuration if it is not
necessarily gapless in the orange or blue kz range):

(1) In Sec. IV B we have discussed a condition [sum-
marized by Eq. (11) and derived in Appendix B], that the
representations of Cn in the orange and blue kz ranges must
necessarily fulfill in order for the TPP to be admissible. Ac-
cording to Fig. 9, we have D0(Cn) = ρ2D(Cn) and D1(Cn) =
ρ1D

a (Cn) ⊕ ρ1D
b (Cn), such that the condition for the TPP con-

figuration to be admissible is

det ρ2D(Cn) = ρ1D
a (Cn)ρ1D

b (Cn). (14)

Note that this is fully determined by the rotation eigenval-
ues since the determinant on the left is just the product of
eigenvalues. In Appendix B 4, we show that this excludes
exactly the TPPs with two 1D ICRs that have different ro-
tation eigenvalues, i.e., for the little cogroups C4(v) these are
the combinations (E ; A, B) and for C6(v) the combinations
(Ei; A, B), i = 1, 2 (we have omitted subscripts of the 1D ICR
labels since the argument is insensitive to them). In these cases
neither the jump of the hinge charge nor the Euler and 2SW
monopole charges are defined.

(2) For the little cogroup C6(v), the gaplessness can be
understood from the NL structure implied [60] by the type
of TPs involved, as illustrated in Fig. 10. A TPP consisting of
one type-A and one type-B TP necessarily has NL arcs in the
principal gap that extend beyond the red kz range. In contrast,
if both involved TPs are of the same type, the orange and the
blue kz ranges can generally be gapped. On the one hand, the
case of two type-A TPs is very simple since there are no addi-
tional NLs and the bulk is gapped in the corresponding regions
of kz. On the other hand, for two type-B TPs there must be NL
arcs in the principal band gap attached to both TPs. However,
the NL arcs can tie the two TPs together in the red kz range,
where the gapless 2D cuts are not considered when analyzing
the higher-order topology, thus leaving the orange and the blue
kz range gapped. Note that in the applicable case, i.e., C6(v)

which are the only point groups where both types of TPs are
possible, this criterion turns out to be equivalent to the first.

(3) While the above two points give necessary criteria for
having a gapped bulk, they are not sufficient. Two type-A
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FIG. 10. Illustration of possible nodal-line (NL) compositions
for the three considered triple-point pair configurations. (a) Two
type-A triple points (TPs) have no attached NL arcs. (b) Two type-B
TPs both exhibit attached NL arcs in the principal gap (red), but these
NLs can compactly tie the two TPs together, leaving the 2D bulk
gapped in both the orange and in the blue kz range. (c) If one of
the TPs is type A and the other type B, the NL arcs in the principal
gap necessarily cross into either the orange or into the blue kz range,
making the corresponding 2D cuts gapless.

TPs do not have any NL arcs attached, but they are often
accompanied by nexus points, i.e., points on the HSL away
from the TPs where NL arcs coalesce [59] [see Figs. 11(a) and
11(b)]. If there are an even number of nexus points in the prin-
cipal gap, then there are two options: (a) the NL arcs connect
together through the red kz range or (b) the NL arcs extend
outside the red kz range, making the orange and blue kz ranges
gapless. These two cases are illustrated in Figs. 11(a) and
11(b), respectively, for a C4-symmetric example. Similarly,
the NL arcs of two type-B TPs might not connect through the

FIG. 11. Illustration of certain more intricate nodal-line (NL)
compositions which can also arise near triple-point pairs (TPPs).
(a) Type-(A, A) TPP with two red nexus points whose NLs are tied
together inside the red kz range, leaving the 2D bulk gapped in
both the orange and in the blue kz range despite the nexus points.
Here, both the monopole charges and the hinge-charge jump can be
defined. (b) Analogous situation as in the previous panel; however,
here the NLs extend into the orange and blue kz ranges rendering the
corresponding 2D cuts gapless. In this case, neither the monopole
charges nor the hinge-charge jump can be defined. (c) Type-(B, B)
TPP with NL arcs extending outside the red kz range, making the rel-
evant 2D cuts gapless. The monopole charges and the hinge-charge
jump are undefined. This scenario should be contrasted to Fig. 10(b),
which shows a similar situation with the NL arcs tied together inside
the red kz range.

red kz range as indicated in Fig. 10(b) but rather extend outside
of it as shown in Fig. 11(c). These cases are not distinguished
by symmetry properties but by the model parameters. The
results of our analysis, e.g., Table II, apply to the cases that
do have a gapped bulk in some part of both the orange and the
blue kz ranges.

Let us remark that the cases disallowed by the first criterion
1 for point group C4(v) (which according to Table I involve a
pair of type-A TPs) correspond to situations where there is one
(or a larger odd number of) symmetry-imposed nexus points
of NLs in the principal gap, i.e., with the NLs attaching to the
red region demarcated by the two TPs. An example of such
a TPP configuration is illustrated in Fig. 8(b). Since an odd
number of nexus points cannot be paired as in Fig. 11(a), there
necessarily exist extended NLs which render either the orange
or the blue kz region gapless. Therefore, the corresponding
TPP is not admissible for the same reason as is visualized for
the mixed-type TPP in Fig. 10(c).

Having clarified the necessary conditions to realize an
admissible TPP, let us tackle their associated hinge-charge
jump. To observe the hinge charge, the system needs to be
extended in the z direction and finite in the x and y directions,
with a geometry possessing the same Cn symmetry as the SG
[see Fig. 7(a)]. We need to distinguish geometries with the
center of the rotational symmetry being placed at different
WPs in the unit cell. In Appendix A 3 we consider all pos-
sible cases for each combination of ICRs listed in Table II
and compute the hinge-charge jump using the appropriate
symmetry-indicator formulas [30] [in particular, aside from
Eqs. (4a) and (4b), we also need the analogous expression
for Q(3)

� ; see Eq. (A1)]. Note that for this analysis the ionic
charge distribution is irrelevant because it does not depend on
kz and therefore it does not contribute to the jump of the hinge
charge. Table II summarizes the results of this analysis. We
observe that the combination of ICRs uniquely determines the
jump of the hinge charge. In particular, there is a nonvanishing
jump 	Q� �= 0 mod e quantized into multiples of e

n for Cn

symmetry for any TPP.
Let us briefly comment on the jump of the surface charge.

As already stated, the vanishing of the fractional part of the
surface charge (which is related to bulk polarization [80]) is
a necessary condition for the hinge charge to be observable
[28]. Therefore, to observe the hinge-charge jump, the surface
charge must vanish for the kz ranges on both sides of the TPP,
which can only happen if the TPP is not associated with a
fractional jump 	P of the 2D bulk polarization. We present in
Appendix A 3 a derivation, based on the symmetry-indicator
formulas for the 2D polarization [28–30], showing that indeed
	P = 0 mod eR (where the Bravais vectors R constitute the
usual ambiguity of bulk polarization [81]) for all tabulated
TPPs. Therefore, the surface charge does not present an obsta-
cle for the definition of the hinge charges, and we expect the
hinge-charge jump to be observable for an appropriate choice
of the boundary termination.

To compute the jump of the 2SW class, or equivalently
the 2SW monopole charge w2 = 	w2 carried by the red NL
segment, we proceed as follows. For systems with C4 or C6

symmetry the 2SW class of the 2D cuts can be computed
readily by applying Eq. (6) with the appropriate interpretation
of the HSPs, as described above. The full derivation can be
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found in Appendix A 3 and the results are displayed in the
bottom-most row of Table II. Consistent with the results of
Sec. III A, we find that type-(A, A) TPPs in PT -symmetric
systems universally carry w2 = 1. Furthermore, we recognize
the following correspondence principle between the bulk in-
variant w2 and the hinge signature 	Q� (which is only defined
modulo e): a nontrivial 2SW monopole charge w2 = 1 implies
a fractional hinge-charge jump of the minimal nonvanishing
magnitude |	Q�| = e

n , while w2 = 0 results in a twice as
large a jump |	Q�| = 2e

n .
Determining the 2SW monopole charge in the case of

C3 symmetry is not as straightforward. However, we note
that the 2SW monopole charge is attributed to the red NL
segment along the HSL as illustrated in Fig. 3(b) and is
therefore a feature local in kx, ky. Thus, it cannot depend
on the specific choice of HSL in the BZ, but only on the
Hamiltonian near the HSL. Noting that the little cogroup of
all three HSLs has the same rotational symmetry and there
is only one class of combinations of ICRs, the admissible
values of the 2SW monopole charge w2 are the same for all
three HSLs �A, KH , and K ′H ′. In the next paragraph we
argue that, in fact, the 2SW class is not symmetry indicated
in the C3-symmetric case, meaning that both w2 = 0 or 1
are possible. We emphasize that this is not in contradiction
to the bulk-hinge correspondence principle described above
because the fractional part of the hinge-charge jump satisfies
± e

3 = ∓ 2e
3 mod e. Thus, the hinge signatures of nontrivial

and trivial 2SW monopole charge become indistinguishable.
The fact that the 2SW class is not symmetry indicated in a

SG with C3 symmetry can be easily deduced from the other re-
sults in Table II. In particular, note that a SG with C6 symmetry
also has C3 symmetry. Thus, we can deform any of the possi-
ble TPP configurations on the �A line of a sixfold-symmetric
system (cf. last two columns of Table II), having either w2 = 0
or 1, into a TPP configuration of a C3-symmetric system by in-
troducing a small C2-breaking perturbation. However, Table II
shows that in the in threefold-symmetric little cogroups, only
a single combination of ICRs is possible, such that any initial
choice of the TPP in the C6-symmetric case results in that
unique TPP type of the C3-symmetric system (in particular,
type-A TPs generically transform into type-B TPs). Since the
2SW class requires only PT symmetry (which is preserved
when breaking C2) and the 2D cuts outside the red kz range
remain gapped under the addition of a small perturbation,
the 2SW class is unaffected by the perturbation. This implies
that both w2 = 0 or 1 are possible for TPPs in C3-symmetric
SGs, and that the 2SW class is not symmetry indicated. We
demonstrate this feature for two explicit models in Sec. V D.

The symmetry-indicator formula for the Euler class,
Eq. (13), is, in contrast to the other formulas, already for-
mulated in 3D. It involves the corepresentations of Cn in the
orange and blue kz ranges. By going through all allowed com-
binations of ICRs (cf. Appendix B 4), we verify that indeed
ρ2D(Cn) and ρ1D

a (Cn) ⊕ ρ1D
b (Cn) are SO(2) matrices; then we

extract r0 = r2D, r1 = r1D+1D and compute χ . The results are
shown in the second to last row of Table II for the cases with
PT symmetry. We observe that in all cases where it is de-
fined, the Euler monopole charge is nontrivial and consistent
with the independently calculated w2, via the relation w2 = χ

mod 2. Note that for n = 3, χ is determined only modulo 3
and thus has undetermined parity, which is consistent with the
2SW not being symmetry indicated in that case (cf. Sec. V D).

Finally, we remark on the consistency of the results in
Table II for a TPP on the KH line of a C6-symmetric compared
to a C3-symmetric system. Naturally, a system with sixfold
rotational symmetry is also threefold rotation symmetric, such
that one expects compatibility of the results for the two cases.
However, there are two caveats: (1) in a C6-symmetric sys-
tem the KH and K ′H ′ HSLs are equivalent such that there
are in fact two symmetry-related TPPs per BZ at the same
value of kz, and (2) the hinge-charge jumps in the two cases
are computed for a different geometry of the sample [cf.
Fig. 7(a)]. Therefore, if we only consider the C3 symmetry
of a C6-symmetric system, we have to (1) count contributions
of identical TPPs on the two HSLs KH and K ′H ′, and (2)
deform the sample with hexagonal cross section into one with
a triangular cross section by combining two corners into a
single new corner as depicted in Fig. 7(b).

With this insight, it is easily checked that the corresponding
entries in Table II are fully consistent. First, for the 2SW class
the two monopole charge contributions are additive, w

(6)
2 =

2w
(3)
2 , which results in w

(6)
2 = 0 mod 2 for both w

(3)
2 = 0

or 1. Furthermore, the corner charge of the triangular cross
section Qab

� is given by the sum of two of the corner charges
of the hexagonal cross section Qab

� = Qa
� + Qb

� [cf. Fig. 7(b)].
Note that due to the sixfold rotational symmetry Qa

� = Qb
� = e

3
mod e, such that for the C6-symmetric model with a TPP on
KH in the triangular geometry we find Qab

� = 2 e
3 . On the

other hand, when interpreting the same model as being C3

symmetric, we simply add the corner charges for a TPP on
KH and K ′H ′, giving Qab

� = 2 e
3 as well.

D. Effect of symmetry breaking

The discussion in Sec. IV C has focused on spinless sys-
tems with PT symmetry (corresponding to the MPGs in rows
two and four of Table I), which has allowed us to characterize
the TPPs with the Stiefel-Whitney monopole charge. How-
ever, stable TPPs can exist even when the PT symmetry is
removed [59] (cf. Table I); in this case, the monopole charges
cease to exist, but the bulk-hinge correspondence of the TPPs
persists. In this section we discuss the effect of symmetry
breaking on the derived bulk-hinge correspondence of TPPs.
First, in Sec. IV D 1 we argue that the the hinge-charge jumps
derived for the cases with mv and PT symmetry still apply
when the PT symmetry is broken while mv remains present.
We continue in Sec. IV D 2 with a discussion how the derived
results generalize to the cases where the TPPs are protected
by the antiunitary CnPT rotational symmetry. Finally, in
Sec. IV D 2 we briefly analyze the effect of breaking other
combinations of symmetries, which generally leads to the loss
of TPPs and to the formation of other species of band nodes.
Our results are summarized in Table III.

1. Triple points protected by Cn and mirror symmetry

We first discuss the effect of breaking PT symmetry while
keeping the rotational symmetry Cn. According to Table I,
mirror symmetry mv is then required to protect TPs. The
crucial observation is that if both PT and mirror mv sym-
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TABLE III. Effect of symmetry breaking on triple-point pairs
(TPPs). We initially consider TPPs in the combined presence of PT
(space-time inversion), Cn (rotation of order n ∈ {3, 4, 6}), and mv

(vertical mirror) symmetries, corresponding to the first row of the
table. Such TPPs are characterized by the second Stiefel-Whitney
(2SW) monopole, by symmetry indicators (#�(n)

p ), and by the frac-
tional hinge-charge jump (integer multiples of e/n). We then consider
the breaking of the various symmetries, as analyzed in Sec. IV D. We
find that TPPs can evolve into higher-order Weyl points (HO-Weyl),
into nodal lines (NLs) with the 2SW monopole, or into Weyl points
or nodal lines without higher-order topology (indicated as “various”).

PT Cn CnPT mv Nodes Bulk invariant Hinge charge
√ √ √

(
√

) TPPs 2SW, #�(n)
p e/nZ

✗
√

✗
√

TPPs #�(n)
p e/nZ

✗ Cn/2
a √

(
√

) TPPs #�(n)
p 2e/nZ

√
✗ ✗ (

√
) NLs 2SW Not quantized

✗
√

✗ ✗ HO-Weyl #�(n)
p e/nZ

✗ ✗ ✗ (
√

) (Various) – Not quantized

aThe requirement of the presence of Cn/2 restricts n to 4,6.

metries are present in the little cogroup, then the ICRs are
not modified by the removal of PT [82,83], i.e., the ICRs
of the unitary symmetries of the full group are exactly given
by the ICRs of the unitary subgroup. As a consequence, the
classification of TPPs in systems with mv symmetry based
on ICRs is identical both with and without PT symmetry;
in fact, detailed analysis [59] reveals that the type (A vs B)
produced by the crossing of specified ICRs is also unaffected
by the removal of PT . An analogous statement also applies
to the result that the ICR combination (E ; A, B) is necessarily
gapless (see Appendix B 5).

To derive the hinge-charge jumps 	Q� associated with
TPPs protected by mv symmetry without PT , we should,
in principle, repeat the above-described analysis (detailed in
Appendix A 3) with the symmetry-indicator formulas that do
not assume time-reversal symmetry, i.e., (A1)–(A3), and the
ICRs of the point groups without PT symmetry. However, as
described in the previous paragraph, the ICRs (and therefore
the rotation eigenvalues) are identical to the ICRs of the corre-
sponding point groups withPT symmetry, such that Eqs. (A2)
and (A3) still simplify to Eqs. (A4) and (A5). This implies
that the jumps in the symmetry indicators are not changed
when breaking PT symmetry while keeping the rotational
symmetry Cn, and the hinge-charge jumps 	Q� remain unal-
tered as well. On the other hand, the monopole charges are not
defined in the absence of PT symmetry. Therefore, all results
in Table II except for the last two rows apply to systems with
mirror mv symmetry but no PT symmetry.

2. Triple points protected by the antiunitary CnPT symmetry

Since TPs can also be protected by the antiunitary ro-
tational symmetry CnPT (cf. Table I), PT symmetry can
alternatively be broken while keeping CnPT . In such a case,
the Cn rotational symmetry is broken, while Cn/2 = (CnPT )2

is a symmetry of the system. We have to distinguish two
scenarios: the TPs are either protected by C6PT or by C4PT .
Note that, as we discuss in Appendix B 5, Eq. (14) still ap-

plies in these MPGs, yet a careful analysis reveals that this
constraint does not imply the inadmissibility of any TPP con-
figurations.

We begin with analyzing the case of C6PT , where the
largest remaining rotational symmetry is C3; therefore, a tri-
angular geometry needs to be considered and the relevant
rotational symmetry quantizing the hinge charges is C3. Fur-
thermore, we find [82,83] that the corresponding MPGs with
and without mv symmetry (6̄′m2′ and 6̄′, respectively) have the
same unitary subgroup as the PT -symmetric MPGs 3̄′m and
3̄′, respectively, with matching ICRs. As a consequence, the
hinge-charge jump is the same as for the other little cogroups
with C3 rotational symmetry, i.e., no change in the bulk-
boundary correspondence. This has motivated us to group C3

and C6PT within a single column of Table II. We remark,
however, that although the ICRs of the subgroup and the
higher-order bulk-boundary correspondence are equivalent to
the C3 case, this is not true for the corresponding TP types,
which depend on the ICRs of the full point group. Irrespective
of the presence (MPG 6̄′m2′) vs absence (MPG 6̄′) of mv

symmetry, the TPs protected by C6PT are always type A [59].
In the latter case, this simply follows from the absence of
symmetries (no mv and no PT ) that can protect NLs lying
off the rotation axis, while in the former this requires a more
in-depth analysis [59].

Similarly, C4 and PT can be broken while keeping C4PT .
However, in that case the largest remaining rotational sym-
metry is C2, such that in a square geometry only the sum
over two adjacent hinges gives a quantized charge [28]. The
resulting little cogroups are the MPGs 4̄′2′m (with mv mir-
rors) and 4̄′ (without mv mirrors), which are subgroups of
the PT -symmetric MPGs 4/m′mm and 4/m′, respectively.
It is easily verified [82,83] that all four listed MPGs have
equivalent C2-rotation eigenvalues for the 1D and 2D ICRs: all
1D ICRs are even while all 2D ICRs are odd under C2. Since
in the presence of C4PT the hinge-charge jump is completely
determined by C2-rotation eigenvalues, the hinge-charge jump
of TPPs protected by C4PT is, in principle, the same as in
the C4 case. However, since only the sum of charges on two
adjacent hinges is quantized, the resulting jump is doubled
to 	Q� = 2 × e

4 mod e = e
2 mod e. The TPs protected by

C4PT are always type A [59], i.e., of the same type as before
the PT breaking. With this analysis, we explained the “C2”
column in Table II, and established the higher-order bulk-
boundary correspondence for all TPPs listed in Table I.

3. Breaking the symmetry protection of triple points

Aside from breaking the symmetry in ways that keep the
TPs robust, here we briefly discuss the effect of breaking
symmetries that protect the TPs. We find that this generi-
cally results in the conversion of the TPs to other species
of band nodes [84]. The case of broken Cn symmetry (with
or without mv) in the presence of PT symmetry has already
been discussed implicitly in Sec. III A for type-(A, A) TPPs,
where we revealed their conversion [60] into multiband nodal
links carrying a nontrivial 2SW monopole. Using the results
in Table II, we can now extend this discussion to generic
TPPs. If the TPP carries w2 = 1, then the 2SW monopole
implies stable multiband nodal links upon breaking the rota-
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tional symmetry. On the other hand, note that w2 = 0 only
arises for type-(B, B) TPPs. Since these are characterized by
the attached NL arcs carrying a π flux of Berry phase [85],
and this quantization is unaffected by the broken rotational
symmetry, a small Cn-breaking perturbation leaves behind a
NL composition with a trivial 2SW monopole. In both cases,
w2 ∈ {0, 1}, the absence of rotational symmetry implies the
absence of the hinge-charge quantization for all geometries
depicted in Fig. 7.

We next analyze the situation where Cn is kept but both mv

and PT are broken. In such cases, the rotational symmetry
ensures that the quantized hinge-charge jump associated with
the TPP is maintained. At the same time, it is impossible to
protect NLs (including the 2D ICR along the HSL) without
PT and mv [86] using Cn alone, and instead Weyl points [87]
become the generic band degeneracy. Therefore, the breaking
of both mv and PT symmetry results in a higher-order Weyl
semimetal with Weyl points along the rotation axis [40–42],
characterized by quantized hinge-charge jumps.

We remark that in spinless systems higher-order Dirac
points [9,45–47] cannot be obtained by perturbing a TPP; and
vice versa, a TPP cannot be created by perturbing a higher-
order Dirac point. Nonetheless, the results in Table II readily
generalize to include the higher-order Dirac points that are
realized in C6-symmetric models by crossing two different
2D ICRs [47]. Indicating such a crossing as (E1; E2), we for-
mally write (E1; E2) ∼ (E1; ρ1D

a , ρ1D
b ) − (E2; ρ1D

a , ρ1D
b ). This

equation represents the fact that the two pairs of TPPs can be
evolved into the higher-order Dirac point: to see this, assume
that along kz the two 1D ICRs (for simplicity dispersionless)
are first crossed by a 2D ICR E1 with increasing energy and
subsequently by 2D ICR E2 with decreasing energy. By shift-
ing the energy of the dispersionless 1D ICRs to higher values,
the nodal feature at half-filling indeed evolves from two TPPs
into a single Dirac point. However, this continuous change
preserves the total topological characterization of the band
nodes, therefore (cf. Table II) we deduce that the higher-order
Dirac point is characterized by hinge-charge jump 	Q(6)

� =
e
6 − (− e

3 ) = e
2 mod e and by a nontrivial Stiefel-Whitney

monopole w2 = 1 − 0 = 1 mod 2.
Finally, if Cn and PT are broken and only mv is kept, then

both the 2SW as well as the rotational symmetry indicators
become invalid. As a consequence, no higher-order topology
remains. Depending on the details of the perturbation, the
mv symmetry could leave behind mirror-protected NLs or
the system opens an energy gap. If mv is also broken, then
depending on the details of the perturbation the system either
becomes a Weyl semimetal or opens an energy gap.

V. MINIMAL MODELS

In the previous section we have shown that TPP config-
urations demarcate a NL segment that can be characterized
by an Euler and 2SW monopole charge (if PT is present)
and by a fractional hinge-charge jump (for all cases). Here
we verify these theoretical predictions by analyzing several
concrete tight-binding models: First, in Sec. V A we revisit
the C4-symmetric model introduced in Sec. II, and we relate
the phenomenology described there to the theoretical results
presented in Sec. IV. Subsequently, in Secs. V B and V C we

FIG. 12. Verification of the second Stiefel-Whitney monopole
charge w2 = 1 carried by the red NL segment in the model defined in
Eq. (1). (a) Nodal configuration near the high-symmetry line �Z and
the ellipsoid (purple) on which the monopole charge is computed.
(b) Wilson-loop spectrum W12 of the lower two bands computed
on that ellipsoid, parametrized by the latitude θ ∈ [−π/2, π/2].
The spectrum shows a single winding (odd parity) and thus implies
|χ | = 1 and w2 = 1.

present two C6-symmetric models, one involving type-A and
the other involving type-B TPs, and confirm that the jumps in
the 2SW class and in the hinge charge as well as the Euler
monopole charge follow the predictions of Table II.

For simplicity, all the discussed models retain both the
(spinless) PT symmetry and the mirror mv symmetry. It fol-
lows from Table I and from the subgroup relations discussed
therein that models for all other species of TPPs can in prin-
ciple be obtained by applying an appropriate perturbation to
one of the C4 or C6 models discussed in the following sub-
sections. We utilize this feature in Sec. V D, where we break
the C2 symmetry in each of the two C6-symmetric models.
This construction allows us to explicitly show that the 2SW
class is not symmetry indicated in C3-symmetric systems, as
previously stated (but not proved) in Sec. IV C.

A. C4-symmetric model

In Sec. II we introduced a tight-binding model with hinge
charges induced by a NL configuration with two pairs of
TPs in adjacent band gaps [see Eq. (1) and Figs. 1 and 2].
We observed that the red NL segments divide the BZ into
two parts: one with nontrivial 2SW class on 2D cuts through
the BZ and hinge charge e

4 , and another with trivial 2SW
class and a vanishing hinge charge. We now recast the phe-
nomenology observed for that model in light of the bulk-hinge
correspondence derived in Secs. III and IV and summarized
in Table II. In particular, we recognize that the 2SW class
and hinge charge are consequences of the nodal configuration
of the model with the robust signatures being their jumps as
a function of kz. In addition, we also clarify how the hinge
charge Q�(kz ) plotted in Fig. 2(b) has been extracted.

As we argued in Sec. III A and proved using symmetry in-
dicators in Sec. IV C, each four-band TPP along a C4-rotation
axis (which are automatically type A) demarcates a NL seg-
ment in the principal gap [red in Fig. 12(a)] which carries
2SW monopole charge w2 = 1. This can be diagnosed by
computing the Wilson-loop spectrum of the lower two bands
on an ellipsoid [purple in Fig. 12(a)] containing one such NL
segment. Figure 12(b) shows that there is a single winding,
confirming that indeed |χ | = 1 and w2 = 1.
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FIG. 13. Charge distribution of the model defined in Eq. (1)
and for the geometry illustrated for fewer unit cells in Fig. 2(b).
Assuming the compensating ionic charge to be located at Wyckoff
position 1a, we plot the total charge distribution at kz = 0 (a), (c) and
at kz = π (b), (d). The total charge at each lattice site is indicated
by a disk with its value encoded both in the area of the disk and the
color scale (see legend on the right of each row). Note that the disks
are scaled separately for each panel: compared to (a) the disks are
enlarged by factors of (b) 2, (c) 3, and (d) 6 to increase visibility.
To remove sub-unit-cell oscillations of the charge distribution ob-
servable in (a) and (b), we perform coarse graining of the data as
explained in Appendix D 1 and Fig. 23(b). The results of the coarse
graining are shown in (c) and (d), respectively.

Furthermore, according to Table II, the TPP should be ac-
companied with a fractional hinge-charge jump in a nanowire
geometry. To observe the quantized hinge charges and
the predicted hinge-charge jump, the termination of the
nanowire has to preserve the C4 symmetry. Here, we opt to
study the model in the rotated square geometry shown in
Fig. 2. To fully specify the model, we also need to choose
where to place the ionic charges. The placement is not fixed
by the tight-binding model itself and in a real material would
depend on the chemical composition. While the ionic charge
distribution affects the value of the hinge charge and can even
lead to fractional hinge or corner charges for systems that
are electronically completely trivial [88], it does not affect
the hinge-charge jump because of its independence of kz. For
concreteness, we assume the ionic charge to be concentrated
at the center of the 2D projection of the unit cell (Wyckoff
position 1a), as indicated with black circles in Fig. 2(a). How-
ever, other distributions of the ionic charge are possible; in
particular, moving charge n|e| from 1a to 1b position changes
the corner charge of a 2D system by − n|e|

4 , as is easily verified
from Eqs. (17)–(19) in Ref. [30].

For fixed kz of the nanowire geometry model, we consider
a 2D system with 20.5 × 20.5 unit cells [compare Fig. 2(a) for
3.5 × 3.5 unit cells] and compute the charge distribution using
exact diagonalization. Results for kz = 0 and π are shown in
Figs. 13(a) and 13(b), respectively. On length scales smaller

than a unit cell, we observe strong oscillations, which make
it impossible to directly integrate the charge on a corner or
even detect any possible localization. This is a typical problem
for the case of ionic crystals and is usually tackled by coarse
graining the charge distribution [29,30,89]. We perform a dis-
crete version of such a coarse graining by following a scheme
explained in Appendix D 1. Considering each orbital position
(i.e., the two per unit cell) as a separate site of a square
lattice, we compute the charge on the dual square lattice [cf.
Fig. 23(b)] by distributing charge on each site of the original
lattice with equal weights to the nearest sites of the dual
lattice. Effectively, this coarse grains the charge distribution
to the length scale of one unit cell and significantly reduces
the oscillations, as shown in Figs. 13(c) and 13(d).

After coarse graining, we can integrate over various re-
gions to find the bulk, edge, and corner charges. First, we
observe that the bulk and edge charges vanish for both kz =
0, π as can be seen in Figs. 13(c) and 13(d). Due to the
double-band inversion at �, the model has vanishing Berry
phases along the path M�M (perpendicular to the edge),
which implies [80] that the bulk polarization [81] and there-
fore the edge charge vanish. On the other hand, the corner
charge only vanishes for kz = π . The nonvanishing corner
charge at kz = 0 is a consequence of the corner-induced filling
anomaly [28]. This excess charge is strongly localized near
the four corners. Integrating over the gray area indicated in
the figure, and taking care that the integration region forms
90◦ angles with the edges [29], we find Q� = 0.2498e for
kz = 0 and Q� = 8 × 10−9e for kz = π . The deviations from
the expected values e

4 and 0 are due to finite-size effects, and
can be further reduced by increasing the total system size and
the coarse-graining scale while keeping the relative size of the
integration region fixed.

We numerically compute the 2SW class and the (coarse-
grained) corner charge of the C4-symmetric model defined in
Eq. (1) using the described methods for planes at multiple
values of fixed kz. Our results are summarized in Fig. 2(b)
in Sec. II. We find that the model exhibits a jump of the 2SW
class by +1 and of the hinge charge by + e

4 as the 2D ICR
moves from the occupied to the unoccupied band subspace.
This agrees with the prediction of Table II since the ICRs
of the bands involved in the two TPs on the HSL �Z are
(E ; B1, B2). While far away from the TPs the hinge charge is
very close to the quantized value, there are finite-size effects.
This is especially observed in the small deviations from the
quantized values for kz near to the closing of the principal gap
(i.e., in the vicinity of each TP), where the localization length
of the corner charge is expected to grow.

B. C6-symmetric model with type-A triple points

To realize a type-(A, A) TPP along a C6 rotational symme-
try, we consider the �A line of the hexagonal SG P6/mmm
(No. 191). More specifically, we consider a model [detailed
in Eq. (C3) of Appendix C 2 a] with (dxy, dx2−y2 ) orbitals
transforming in the 2D ICR E2g and orbitals fx(x2−3y2 ) and
fy(3x2−y2 ) transforming in 1D ICRs B1u and B2u, respectively,
all placed at the Wyckoff position 1a with site-symmetry
group D6h. We tune the parameters such that the d orbitals
have lower energy than the f orbitals at all HSPs with the
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FIG. 14. Results for the C6-symmetric model with two type-A triple points (TPs) defined in Eq. (C3) and discussed in Sec. V B. (a) Band
structure with the two TPs indicated by black arrows. (b) Nodal-line structure in the full Brillouin zone with the high-symmetry points indicated.
Nodal lines in the first, second, and third band gaps of the four-band model are shown in orange, red, and blue, respectively. (c) The second
Stiefel-Whitney class can be determined from the Wilson-loop spectrumW12 of the lower two bands on horizontal cuts through the Brillouin
zone (parametrized by the projection k1 of the momentum onto the first reciprocal lattice vector). Blue/orange lines show the spectrum for
kz = 0 (single winding) and green/red lines for kz = π (no winding). (d) Cross section through a hexagonal nanowire three shells wide; light
blue hexagons indicate the model’s unit cells. The orbitals are represented in color and all placed on top of each other in the center of the
unit cell. The ionic charge is concentrated at the same position, indicated by the black circles. (e) Charge distribution for a cut through a
16-shell-wide nanowire at kz = 0. The charge at each site is indicated by a disk with its value encoded both in the area of the disk and the
color scale (see legend on the right). The left half shows the charge distribution on the original lattice, and the right half shows the charge
after two iterations of coarse graining [cf. Appendix D 1 and Fig. 23(c)]. A hinge charge of Q� = e

6 with a strong localization is observed. (f)
Hinge Brillouin zone with hinge charge Q� (blue solid line, left axis), second Stiefel-Whitney class w2 (orange dashed line, right axis), and the
projection of the bulk dispersion along kx = ky = 0 (gray). The doubly degenerate band is displayed with a thicker line.

exception of a double-band inversion at �. Consequently, on
�A two 1D ICRs (B1, B2) consecutively cross the 2D ICR
(E2) resulting [60] in two type-A TPs. The band structure and
the NL configuration of the model are displayed in Figs. 14(a)
and 14(b), respectively. We remark that apart from the twofold
degeneracy along the �A line, the model also exhibits twofold
degeneracies along the KH lines; however, these lie within
the occupied band subspace and therefore have no effect on
the discussed topological features. The model exhibits no
additional NLs beyond these degeneracies along the HSLs.
We remark that for the computation of the hinge charges we
set the compensating ionic charge to also reside at site 1a.

According to Table II, we expect a jump of + e
6 in the hinge

charge and +1 in both the Euler and 2SW class when going
from the orange kz range to the blue kz range. More precisely,
based on a symmetry eigenvalue analysis and Eqs. (4) and
(5), we expect that the 2SW class is 1 in the blue kz range
and 0 in the orange kz range, while the hinge charge should
be e

6 and 0, respectively. The results for the 2SW class are
verified by computing the Wilson-loop spectra of the lower
two bands on horizontal cuts through the BZ as a function of
kz. The 2SW class is then given by the parity of the winding of

the spectrum. Two examples, for kz = 0 and π , are shown in
Fig. 14(c), and demonstrate that indeed |χ | = 1 and w2 = 1
for kz = 0. Figure 14(f) shows w2 as a function of kz with the
visible jumps at the position of the two TPs along the �A line.

To verify the results for the hinge charge, we construct a
system finite in x and y directions with 16 hexagonal shells in
the cross section [the cross section illustrated in Fig. 14(d) has
three shells]. Using exact diagonalization we find the charge
distribution at half-filling for 2D cuts of the BZ that lie outside
of the red kz range. Figure 14(e) shows the results of such
analysis for kz = 0. The charge is strongly localized at the
corners of the 2D cross section while it vanishes both in the
bulk as well as along the edges. Note that while the charge
vanishes on the edges [integrating over the gray edge area
in Fig. 14(e) we obtain 8 × 10−4|e|], we also observe small
oscillations of the charge in the direction perpendicular to the
edges which visually obscure the localization of the corner
charge. To reduce these oscillations, we perform coarse grain-
ing similar to the one described in the previous subsection.
The major technical difference is that here we coarse grain
over a hexagonal supercell with two shells, i.e., seven unit
cells, in one iteration (cf. Fig. 23). After two iterations we end
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FIG. 15. Results for the C6-symmetric model with two type-B triple points (TPs) defined in Eq. (C5) and discussed in Sec. V C. The
organization of the panels is in one-to-one correspondence with Fig. 14. The key differences to observe are as follows: (b) Due to the TPs
being type B, there are nodal-line arcs attached to them, visible in the nodal-line structure. (c) The Wilson-loop spectra for both kz = 0 and π

show double and zero winding, respectively, implying |χ | = 2 and w2 = 0. (e), (f) The hinge charge in the region around kz = 0 is Q� = − e
3 ;

the localization length is larger than for the model shown in Fig. 14, such that finite-size effects produce a visible deviation from the ideal
quantized value of the corner charge in (f).

up with a coarse-grained lattice that is smaller by two shells.
Integrating over the gray corner area in Fig. 14(e) we obtain
0.1652e, where the deviation from e

6 can be traced back to
finite-size effects. As can be seen in Fig. 14(f) those finite-size
effects grow stronger with decreasing the central energy gap,
i.e., close to the two TPs.

C. C6-symmetric model with type-B triple points

We next consider a C6-symmetric model with type-(B, B)
TPP realized in the same SG (P6/mmm, No. 191) and on the
same hexagonal lattice. The following four orbitals are placed
at Wyckoff position 1a: fx(x2−3y2 ) and fy(3x2−y2 ) transforming,
respectively, in 1D ICRs B1u and B2u, together with (px, py)
transforming in the ICR E1u. The model’s Bloch Hamiltonian
is given in Eq. (C5) in Appendix C 2 b. As in the previously
discussed tight-binding models, we set the parameters to pro-
duce a double-band inversion at �. As a consequence, the p
orbitals have lower energy than the f orbitals at all HSPs
except �. Then, two 1D ICRs (B1, B2) consecutively cross
the 2D ICR (E2) resulting [60] in two type-B TPs. The band
structure and the NL configuration are shown in Figs. 15(a)
and 15(b), respectively. We observe the NL arcs attached
to the type-B TPs; as desired, the NL arcs in the principal
gap (shown in red) are tied together in the red kz range [cf.
Fig. 10(b)]. There are no further degeneracies in the principal
band gap of the model. According to Table II, we expect a
jump of − e

3 in the hinge charge and no jump of the 2SW
class when the 2D ICR along �A moves from the occupied to
the unoccupied band subspace, but an Euler monopole charge
|χ | = 2. More precisely, based on a symmetry eigenvalue

analysis and Eqs. (4) and (5), we anticipate that the 2SW class
vanishes in both regions, while the hinge charge is expected
to be 0 and − e

3 in the orange and blue kz range, respectively,
assuming that the compensating ionic charge is placed at
position 1a.

We verify these predictions numerically. First, in Fig. 15(c)
we plot the Wilson-loop spectra of the lower two bands on
horizontal cuts at both kz = 0 and π . Since they both exhibit
even winding number, we confirm that w2 = 0 on both sides
of the TPPs. We observe that the Wilson-loop spectrum for the
2D cut at kz = 0 has winding number ±2, meaning that the
corresponding 2D model is an Euler insulator [74]. The dou-
ble winding also implies that each TPP with its attached (red)
NL arcs (the nodal-line nexus) carries a Euler class |χ | = 2
on both the occupied and the unoccupied band subspaces, as
predicted. Therefore, as long as PT symmetry is present, the
only way to gap out the red NL nexus is to annihilate it with
the other NL nexus [68]. We remark that this topological ob-
struction is trivialized in the presence of additional occupied
and unoccupied bands [71].

To calculate the hinge charge, we construct a system fi-
nite in x and y directions with 20 hexagonal shells in the
cross section [in Fig. 15(d) we illustrate a system with three
hexagonal shells]. By exact diagonalization we find the charge
distribution at half-filling for values of kz where the spectrum
is gapped. In Fig. 15(e) the charge distribution for kz = 0
is shown. The charge is still localized at the corners of the
2D cross section and vanishes both in the bulk as well as
along the edges. However, due to trivial in-gap states and
therefore a reduced energy gap, we observe an oscillation of
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FIG. 16. Nodal lines and Wilson-loop spectra for the C3-symmetric models obtained by breaking the C6 symmetry in the models discussed
in Secs. V B and V C using the trigonal perturbation given in Eq. (C6) with δC3 = 8 × 10−4. (a), (d) Nodal lines in the full Brillouin zone
(black frame). Nodal lines in the first, second, and third band gaps are shown in orange, blue, and red, respectively. (b), (e) Closeups of the red
nodal-line segment. In both cases the triple points are clearly type B with three attached nodal-line arcs per energy gap. (c), (f) Wilson-loop
spectra on the purple ellipsoids shown in (b) and (e), respectively. The single winding in (c) implies |χ | = 1 and w2 = 1 and the double
winding in (f) implies |χ | = 2 and w2 = 0.

the charge distribution in the direction perpendicular to the
edge, as well as a significantly larger localization length for
the corner charge than found in the previous hexagonal model.
In fact, the chosen system is too small to achieve convergence,
but it is sufficient to support the theoretical predictions in
Table II. Integrating the coarse-grained charge distribution
over the gray edge area in Fig. 15(e) we obtain 4 × 10−2|e|;
while over the gray corner area we find −0.2983e, which is
close to the ideal result − e

3 in the absence of finite-size effects.
We repeat the same analysis for 2D cuts for multiple values of
kz, and plot the dependence of the 2SW class and of the hinge
charge as a function kz (where the gap is open) in Fig. 14(f).

D. C3-symmetric models

In this section, we explicitly show that in the presence of
PT symmetry there exist C3-symmetric models where the
TPPs carry either w2 = 0 or 1. We therefore confirm that the
2SW monopole charge in C3-symmetric SGs is not symmetry
indicated, thus justifying the ambiguous entry in Table II.
This freedom is present despite the fact that (cf. Table I),
C3-symmetric HSLs only support a single species of TPs,
namely, type B with three attached NLs arcs and with the
central NL carrying Berry phase π .

We can obtain such C3-symmetric models by reducing the
C6 symmetry of the models discussed in Secs. V B and V C
down to C3 (while keeping PT ). A possible perturbation that
achieves that is given by Eq. (C6) in Appendix C 2 c. The
resulting NL structure for each parent model is shown in

Figs. 16(a) and 16(b) and 16(d) and 16(e), respectively. Note
that the 2SW monopole charges of the TPPs in the parent
hexagonal models are not changed by the trigonal perturba-
tion: as long as the enclosing ellipsoid [purple in Figs. 16(b)
and 16(e)] is chosen to be sufficiently large to contain the
lobes of red NLs, the principal gap does not close on that
ellipsoid, keeping the Wilson-loop winding invariant. We con-
firm this by explicitly computing the Wilson-loop spectra on
the enclosing ellipsoids of the perturbed models, plotted in
Figs. 16(c) and 16(f).

We briefly comment on the change of the NL configura-
tions from Figs. 14(b) and 15(b) to Figs. 16(b) and 16(e),
respectively. In both cases, the central NL stretched along �A
initially carries quaternion charge −1 (corresponding to Berry
phase 2π [66], i.e., it is a quadratic NL) before switching
on the trigonal perturbation. Let us first consider the case of
type-A TPs [w2 = 1, Figs. 16(a)–16(c)]. Here, as soon as the
perturbation is switched on, all three segments of the central
NL, i.e., in the orange, red, as well as blue kz ranges, split into
four NLs with Berry phase π each. One NL of the quadruplet
is still pinned to the �A line, while the other three NLs are
related by the C3 symmetry and remain attached to the TPs.
As a result, the hegaonal type-A TPs with no attached NL arcs
have transformed into trigonal type-B TPs with three attached
NL arcs in each gap, as detailed in Fig. 16(b).

For the hexagonal model with type-B TPs [w2 = 0,
Figs. 16(d)–16(f)], the process is similar; in particular, one
observes the same splitting of the central quadratic NL into
four linear NLs around the HSL. However, in this case the
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FIG. 17. Bulk properties of the compound Sc3AlC. The band structure (a) without any strain and (b) with 6.6% uniaxial compressive strain
in z direction, which generates a triple-point pair on the �Z line. Triple points are indicated by yellow arrows. (c) Closeup of the band structure
near the triple-point pair with the relevant bands labeled by their irreducible corepresentations. (d) The Brillouin zone of the tetragonal lattice
of strained Sc3AlC. The high-symmetry points and mirror planes are indicated. (e) Nodal lines in the relevant three gaps (orange, blue, red
according to increasing energy) determined from the Wannier tight-binding model for the mirror planes shown in (d). The triple point is clearly
type A. The cross sections of the ellipsoid on which we compute the second Stiefel-Whitney monopole charge with the mirror planes are
indicated by black ellipses. (f) Wilson-loop spectrum of the relevant bands computed on the ellipsoid indicated in (e); the single winding
implies w2 = 1.

hexagonal NL configuration starts out with six attached NLs
per gap because the hexagonal TPs have been type B. Here the
three new NL arcs either annihilate with three of the original
NL arcs (in the principal gap, red) or combine with the origi-
nal NL arcs to form intersecting nodal chains (other two gaps,
orange and blue) [90]. As a result, we find that the hexagonal
type-B TPs have been transformed into trigonal type-B TPs
with three attached NLs per gap, as predicted in Ref. [60].
The intersection of the orange and of the blue NLs visible in
Fig. 16(e) is stablized by the non-Abelian band topology in the
presence of mv and PT symmetries, as discussed in Ref. [66].

VI. MATERIAL EXAMPLES

In this section we discuss two concrete material examples
that illustrate the introduced phenomenology. While these ex-
amples demonstrate that the higher-order topology of TPs can
arise in crystalline solids, the large values of strain required
to realize the presented band structures imply that our partic-
ular materials predictions are not amenable to experimental
studies, and that further research is needed to find realistic
material candidates. Note that in Sec. VIII we briefly discuss
the higher-order bulk-boundary correspondence for TPPs in
spinful systems.

Our discussion is structured as follows. In Sec. VI A we
show that the compound Sc3AlC subjected to large uniaxial
strain exhibits a TPP with type-A TPs on the Z�Z line and no
interfering NLs. Based on first-principles calculations and an

ab initio tight-binding model, we compute the 2SW monopole
charge and the hinge-charge jump. We find that the 2SW
monopole charge takes value w2 = 1 and that a fractional
hinge-charge jump 	Q� = e

4 is present, in agreement with the
values predicted by Table II. This demonstrates the higher-
order bulk-boundary correspondence introduced in Sec. IV.

In Sec. VI B we study a material example with a NL
segment carrying nontrivial Euler monopole charge. The TP
material Li2NaN [60,91] has a single pair of inversion-related
type-A TPs along the A�A line. Based on an effective tight-
binding model [60], we show that one of the NL segments
carries Euler monopole charge |χ | = 2. Furthermore, we
demonstrate that this leads to a topological obstruction pre-
venting the removal of that NL segment when colliding the
two TPs at the A point, instead leading to a conversion into a
nodal ring.

A. Nontrivial Stiefel-Whitney class in strained Sc3AlC

We first consider Sc3AlC [92], which, on the level of a
Wannier tight-binding model, manifests the bulk-hinge corre-
spondence for TPPs derived in Sec. IV C. The compound has a
cubic crystal structure with SG Pm3̄m (No. 221) and exhibits
a threefold-degenerate touching point at � and TPs on the �X ,
�Y , and �Z lines (which are all equivalent) [see Fig. 17(a)].
Furthermore, the spin-orbit coupling is expected to be small
due to the elements involved being light, therefore, we can
neglect it and treat the electrons as spinless. Then, the system
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possesses PT symmetry squaring to +1. Applying uniaxial
compressive strain along one of the equivalent crystal axes
(which we choose to be the z direction) removes the TPs on
the �X and �Y lines leaving only those on the �Z line, and
splits the touching point at � into two additional TPs on the
�Z line [cf. Fig. 17(b) for approximately 6.6% strain]. The
result is a configuration of two inversion-symmetry-related
TPPs on the �Z line with one TPP shown in Fig. 17(c). The
strained material has a simple tetragonal crystal structure with
SG P4/mmm (No. 123).

We study the material by first obtaining the band struc-
ture and wave functions from density functional theory
(DFT) calculations with the projected augmented wave (PAW)
method implemented in the Vienna ab initio simulation pack-
age (VASP) [93,94] with generalized gradient approximation
(GGA) and Perdew-Burke-Ernzerhof (PBE) approximation
[95]. We use a �-centered 8 × 8 × 8 k mesh. Uniaxial com-
pressive strain in z direction is modeled by reducing the lattice
constant in that direction by the appropriate amount. The
lattice structure of Sc3AlC is obtained from the Materials
Project database [96] (material identifier mp-4079 [92]) with
lattice vectors a = 4.512 Å (a = 4.512 Å and c = 4.212 Å af-
ter strain). We construct Wannier functions using WANNIER90
[97] resulting in a Wannier tight-binding model with s, p, d
orbitals of Sc and s, p orbitals of Al and C. We process
disentanglement with a frozen window from −20 to 4 eV
relative to EF but do not perform maximum localization [98].
The hoppings of the Wannier model are symmetrized [99] in
real space.

To check for conflicting NLs in the BZ, we perform addi-
tional DFT calculations on the two inequivalent mirror planes
X�Z and M�Z . The results are shown in Fig. 17(e) and we
observe that the only NLs in the principal gap are the two
NL segments (red) spanning between the TPs of each TPP.
In particular, there are no additional NLs attached to the TPs
off the HSL, confirming that the TPs are type A, in agreement
with Table I. This allows us to define an ellipsoid [whose inter-
sections with the two mirror planes are indicated by the black
ellipses in Fig. 17(e)] enclosing the TPP on which the relevant
2SW monopole charge is defined. Using the Wannier tight-
binding model and the Python package Z2PACK [100,101]
we compute the Wilson-loop spectrum on the ellipsoid [cf.
Fig. 17(f)], and find that it winds once, therefore indicating
w2 = 1.

We further proceed to study the hinge-charge jump in
strained Sc3AlC. First, we calculate the traces of matrix rep-
resentations obtained from VASP to get the ICRs of the energy
bands at HSPs in the first BZ with the help of IRVSP [102]. The
corepresentations at HSLs are then inferred using compatibil-
ity relations obtained from the Bilbao crystallographic server
(BCS) [103–106]. The ICRs of the bands forming the TPP are
found to be (E ; B1, B2) [cf. Fig. 17(c)]. Based on Table II, the
knowledge of the rotational symmetry C4, the HSL �Z , and
the ICRs of the little cogroup of that line allows us to predict
the fractional part of the hinge-charge jump 	Q� to be + e

4 .
To compute the hinge-charge jump explicitly and to verify

the above prediction, we use the Python package PYTHTB to
construct a nanowire with a C4-symmetric cross section of
9.5 × 9.5 unit cells from the bulk Wannier tight-binding
model [see Fig. 18(a)]. Recall that the placement of the ionic

charge in the unit cell does not influence the hinge-charge
jump. Therefore, we choose it such that it simplifies our
calculations: we assume all ionic charge of a unit cell to be
concentrated at WP 1b (at the corner of the 2D projection
of the unit cell), which is also the location of the center of
the cross section [cf. Fig. 18(a)]. The band structure of the
nanowire is shown in Fig. 18(b) as a function of the remaining
momentum kz. Each state ψ is colored according to the inverse
participation ratio

∑
i pi(ψ )2 where pi(ψ ) is the probability of

finding an electron in state ψ at site i in the 2D cross section.
Together with the gray overlay of the bulk states, we can easily
identify the in-gap surface (green) and hinge (red) states.

We now select two kz values at which the principal gap is
open in the spectrum of the nanowire [yellow diamond and
purple triangle in Fig. 18(b)]. Assuming that all states below
the indicated gap are occupied, we compute the total charge
distribution in the nanowire. The results for kz = 0.08 and
0.34, after coarse graining over a unit cell (see Appendix D 1),
are shown in Figs. 18(d) and 18(e), respectively. Integrating
over successively larger square regions at one of the corners
[cf. gray squares in Figs. 18(d) and 18(e)], we observe that
the corner charge (corresponding to the hinge charge of the
3D model at the selected value of kz) converges to e

4 and 0 for
kz = 0.08 and 0.34, respectively. This verifies that the jump is
	Q� = e

4 , as predicted.
The localization of the charge at the corners is already

visible in Figs. 18(d) and 18(e) and the edge charge (corre-
sponding to the surface charge of the 3D model) is clearly
vanishing; however, there are strong oscillations of the charge
on the edges. These oscillations are due to trivial surface
states, as is revealed by computing the charge distribution
on a slab (data not shown). Using the information about the
charge distribution on the slab, we remove (see Appendix D 2)
this edge signal and reveal the strong localization of the net
charge on the corners [cf. Figs. 18(f) and 18(g). Note that this
removal of the charge oscillations is performed in a charge-
neutral way, i.e., by changing neither the corner nor the edge
charge.

B. Nontrivial Euler monopole charge in Li2NaN

We now turn our attention to Li2NaN. Reference [60]
identified the compound Li2NaN as an ideal candidate to
observe the conversion of TPs to multiband nodal links, and
developed its description using an effective four-band model
which we assume in the following discussion. The com-
pound exhibits a single pair of inversion-related TPs and no
additional NLs close to the central NL (along the recipro-
cal lattice vector G3 ‖ kz) and TPs, as shown in Fig. 19(a).
Therefore, this is also an ideal candidate for a TP-induced
Euler monopole charge. The Berry phases of each band of the
tight-binding model in kz direction can be easily computed
using the Wilson-loop method, and we obtain (0, 0, 0, π ),
with the nontrivial value carried only by the highest-energy
band. Based on the arguments presented in Sec. III B, we
therefore predict the red NL segment (connecting TPs in two
adjacent BZs) to carry Euler monopole charge |χ | = 2 and the
blue one χ = 0. We verify these predictions in the effective
four-band tight-binding model by computing the Euler class
on ellipsoids enclosing the corresponding NL segment, such
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FIG. 18. Hinge-charge jump observed in the nanowire geometry of Sc3AlC. (a) Cross section of the nanowire geometry (extended along
the z direction) with 9.5 × 9.5 unit cells. The unit cells are shown as blue shaded squares, and the boundary of the nanowire indicated with a
black frame. Two-dimensional Wyckoff positions (WPs) are shown as green, red, and orange points with their labels in the inset that shows
an enlarged single unit cell. The scandium atoms project onto WPs 1b and 2c, the aluminum atoms onto 1a, and the carbon atoms onto 1b.
Note the C4 symmetry of the cross section with the center at WP 1b. The black circle in the enlarged unit cell denotes the location of the ionic
charge of 8|e| per unit cell. (b) Band structure of the nanowire (colored lines) with cross section shown in (a) as a function of momentum (kz) in
the hinge Brillouin zone. The projected bulk bands (transparent gray) are overlayed on the nanowire spectrum. The coloring of the bands (see
legend) encodes the inverse participation ratio, with a larger value indicating localization on fewer sites. Consequently, hinge-localized states
are colored red, surface-localized states green, and bulk states blue. The two energy gaps to the left and to the right of the studied triple-point
pair are marked by a yellow square (kz = 0.08) and by a purple triangle (kz = 0.34), respectively. (c) Integrated corner charge (corresponding
to the hinge at the selected values of kz) for the two kz cuts with filling as indicated in (b) as a function of the side length a of the square
integration region [cf. gray squares in (d) and (e)]. The corner charge for kz = 0.08 converges to e

4 and for kz = 0.34 to 0 (yellow vs purple
solid lines). (d), (e) Charge distribution coarse grained over one unit cell for kz = 0.08 and 0.34, respectively. The magnitude of the charge (in
units of e) is shown by both the area of the circles as well as the color (see legend on the right). (f), (g) Charge distribution for the same values
of kz after removing the contributions from the edge based on slab calculations (cf. Appendix D 2). In (f) the localization of a nonzero charge
on the corners is clearly visible.

as shown in Fig. 19(a), using three independent methods: (i)
via the linking numbers obtained when applying strain to get
proper linked nodal rings, (ii) via Wilson-loop spectra, and
(iii) directly via the Euler curvature [73].

We first discuss the red NL segment. Following the argu-
ment of Sec. III, we reduce the C6 rotational symmetry of
Li2NaN down to C2 by applying tensile strain of approxi-
mately 5% in y direction. This turns the NL segment into
linked red and blue NL rings [cf. Fig. 19(b)]. The Berry phases
φ3,4 of the bands forming the blue NL (i.e., bands 3 and 4)
on the green contour satisfy φ3 + φ4 = π mod 2π . Thus,
according to Sec. III B, the red nodal ring and consequently
also the red NL segment in Fig. 19(a) carry Euler monopole
charge |χ | = 2. We arrive at the same conclusion based
on the Wilson-loop spectrum computed on the purple ellip-
soid shown in Fig. 19(a). The double winding implies [68]
|χ | = 2.

To verify this prediction independently, recall that the Euler
class can be brought [69,107] to a form analogous to the

Chern number, i.e., an integral of a curvature over the base
manifold. By adopting a Hilbert-space basis for which PT is
represented by complex conjugation [73], the eigenstates can
be gauged to be purely real. For two real Bloch bands |u1(k)〉
and |u2(k)〉 (which could possibly be degenerate with each
other, but which must be separated by energy gaps from all
other bands) one then defines the Euler curvature

F(k) = 〈∇ku1(k)| × |∇ku2(k)〉, (15)

i.e., as the off-diagonal component of the two-band non-
Abelian Berry-Wilczek-Zee connection [69,73]. Integrating
the curvature over a closed surface S2 gives the Euler class

χ = 1

2π

∫
S2

dS · F(k) ∈ Z. (16)

Note that the Euler class is independent of the parametrization
of S2, such that we can parametrize the relevant ellipsoid by
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FIG. 19. Verification of the Euler monopole charge |χ | = 2 (χ = 0) on the red (blue) nodal-line segment in Li2NaN, based on the four-band
tight-binding model of Ref. [60]. (a)–(d) Show illustrations and data for the red nodal-line segment (centered at A) and (e)–(h) for the blue
segment (centered at �). (a), (e) Nodal line and triple-point configuration in the first one-and-a-half Brillouin zones A�A�. Nodal lines in the
second and third band gaps are shown in red and blue, respectively; triple points are shown in yellow. The purple ellipsoid defines the surface
on which we compute the Euler class. (b), (f) Linking structure of the corresponding nodal chain configuration after applying approximately
5% tensile strain in y direction. The green line shows the closed contour on which the Berry phases are computed. (c), (g) Spectrum of the
Wilson-loop operatorsWi j (θ ) of bands i and j as indicated in the axis labels of constant latitude contours on the purple ellipsoid in (a) and (e),
respectively, parametrized by the latitude angle θ . (d), (h) Euler curvature F (θ, ϕ) on the purple ellipsoid in (a) and (e), respectively, calculated
using the algorithm from Ref. [73]. The curvature integrates to |χ | = 2 in (d) and to χ = 0 in (h).

the spherical coordinates (θ, ϕ) ∈ [0, π ] × [0, 2π ) and define

F (θ, ϕ) = 〈∇(θ,ϕ)u1(θ, ϕ)| × |∇(θ,ϕ)u2(θ, ϕ)〉. (17)

We utilize the algorithm of Ref. [73] implemented in Mathe-
matica to compute the Euler curvature on the ellipsoid shown
in Fig. 19(a). The resulting F (θ, ϕ) is plotted in Fig. 19(d).
Integration over the full ellipsoid confirms that |χ | = 2.

The nontrivial value of χ implies a topological obstruction
as discussed in Sec. III B: the red NL segment cannot be
removed completely as long as PT symmetry is preserved.
We verify this explicitly in the context of the tight-binding
model of Ref. [60]. The 1D ICR involved in the TP has most
of its weight on the nitrogen pz orbital, such that we can move
the TPs towards the A point by reducing the onsite energy
of that orbital. We denote the change in energy by 	εNpz =
−δ eV < 0. As shown in Fig. 20, increasing δ shrinks the red
NL segment until the two TPs collide at A. At that stage, the
band degeneracy in the red energy gap has reduced to a single
touching point at A. However, the Euler monopole charge
prevents opening of the energy gap; indeed, increasing δ even
further results in a conversion of the red TP segment into a
nodal ring in the horizontal kz = π plane. Crucially, the Euler
monopole charge persists in PT -symmetric systems even if
the horizontal mz symmetry was removed from the model.

FIG. 20. Demonstration of the topological obstruction of the red
nodal-line segment in Li2NaN due to the nontrivial Euler monopole
charge. The nodal lines (obtained from the tight-binding model in
Ref. [60]) near the rotation axis A�A� spanning over one-and-a-
half Brillouin zones are shown, with nodes in the second and third
band gaps shown in red and blue, respectively. The two triple points
(yellow) can be forced to collide as described in the text by tuning
a parameter δ of the tight-binding model. The triple points collide
at δ = −8.6, at which point the red NL segment has been reduced
to only a single touching point at A. Increasing δ even further, a
horizontal red nodal ring forms in the ALH plane.
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We remark that the critical three-band touching obtained by
colliding the two TPs at the A point shares certain similarities
with the very recently discussed Euler topology of topological
acoustic triple points by Ref. [108]. The notable difference is
that in our case the Euler-point degeneracy requires fine tuning
of the model parameters, whereas Ref. [108] finds this to be a
generic feature of the acoustic phonon branches.

Finally, we also comment on the blue NL segment. We
can use the same three arguments to show that χ = 0 in this
case. For the argument via the linking, the relevant change
is that now we need to consider bands 2 and 3, whose Berry
phases along the green contour [cf. Fig. 19(f)] are both van-
ishing. Therefore, χ = 0 despite the linking of the rings (see
Sec. III B and Appendix E). We arrive at the same conclusion
by observing that the Wilson-loop spectrum in Fig. 19(g)
does not wind. Finally, in Fig. 19(h), we present the Euler
curvature for the purple ellipsoid shown in Fig. 19(e). The
Euler curvature turns out to be antisymmetric with respect
to reflection at θ = π/2, such that integrating over the whole
ellipsoid results again in χ = 0.

VII. EXTENSION TO NONSYMMORPHIC SPACE GROUPS

Up to now, we have simplified the presented analysis by
excluding nonsymmorphic SGs, i.e., SGs containing symme-
tries like screw rotations and glide planes. In this section we
discuss these excluded cases, arguing that the inclusion of
nonsymmorphic elements in the space group does not change
the bulk-hinge correspondence. In particular, we reveal that
Table II applies to triple-point pairs in nonsymmorphic SGs
as well, with the only differences being that (i) the first row
of the table “Cn” should be interpreted as only the point-group
part of the possibly present nonsymmorphic screw symmetry
(i.e., without the translation), and (ii) the mapping of ICRs
of the little group to the ICRs of the little cogroup should be
performed as described in Ref. [59].

To motivate the advertised result, note that our parallel
work [59] shows that nonsymmorphic symmetries do not al-
ter the classification of TPs. More precisely, as long as the
HSL supports TPs (i.e., both 1D and 2D ICRs of the little
group exist; due to nonsymmorphicity this property may be
lost for certain HSLs on the BZ boundary), the symmetry
constraints on the Bloch Hamiltonian H (k) due to some
corepresentation of the little group Gk of the HSL supporting
TPs, are equivalent [59] to the constraints due to a corre-
sponding corepresentation of the little cogroup Gk (which
consists of the corresponding point-group symmetries, i.e.,
without the translation). However, although nonsymmorphic
symmetries have trivial implications for the TP classification,
they may nontrivially affect the rotation eigenvalues that en-
ter the symmetry-indicator formulas for the fractional corner
and hinge charges (in particular if the rotational symmetry is
replaced by a screw rotation).

Here, we argue in two steps that even in the case of a screw
rotation, there is no change to the bulk-hinge correspondence
derived in Sec. IV C. First, we discuss in Sec. VII A how to
apply the symmetry-indicator formulas for corner charges in
Cn-symmetric 2D systems [28,30] to compute momentum-
resolved hinge charges in a wire geometry of 3D crystals with
a screw rotation (instead of pure rotation) symmetry. Along

the way, we derive that the symmetry-indicator formulas for
corner charges [without assuming time-reversal symmetry (cf.
Appendix A 1)] are symmetric under cyclic permutation of the
rotation eigenvalues. Next, we consider in Sec. VII B the map-
ping of ICRs between the little group and the little cogroup of
the HSL on which the TPs lie. We show that this mapping
is compatible with the application of the symmetry-indicator
formulas for the hinge charge, allowing us to establish the
generalization of the bulk-hinge correspondence to TPPs pro-
tected by a screw symmetry.

A. Fractional hinge charges due to screw rotational symmetry

Consider any SG with a nonsymmorphic rotational sym-
metry around the z axis, {Cn|w}, where n = 2, 3, 4, 6 and w is
the nonsymmorphic translation. Note that the x, y components
of w, i.e., the ones perpendicular to the rotation axis, can be
removed by shifting the rotation axis (this may potentially
result in a change of the fractional translations associated with
other symmetry elements in the SG, but this is not relevant
for our argument). We end up with the screw symmetry Sn =
{Cn|m

n ez} with m ∈ Z that together with the translations t ∈ T

by lattice vectors generate a subgroup G of the full SG (i.e., we
drop the potentially present time-reversal symmetry as well as
all point-group operations that are not generated by Cn).

Let D be the representation of G in which the eigenfunc-
tions of the Hamiltonian transform and Dk its restriction to the
k sector, i.e., a representation of the little group Gk. Then, for
any {R|v} ∈ G,

Dk({R|v})H (R−1k)Dk({R|v})−1 = H (k). (18)

In analogy with Sec. IV C, we take a 2D cut at fixed kz and
define the 2D Hamiltonian Hkz (kx, ky) = H (k), which still
satisfies Eq. (18) at any k2D = (kx, ky) and for any {R|v} ∈ G.
In particular, for any 2D HSP � invariant under S�

n for some
power � of the screw symmetry, where 0 < � < n is a divisor
of n, Hkz commutes with the operator Dk(S�

n ) which admits
eigenvalues

s(n/�)
p = ei �

n [−mkz+2π (p−1)], p = 1, 2, . . . ,
n

�
. (19)

The above follows because Dk(S�
n ) is a representation and

(S�
n )n/� = Sn

n = {1|mez}, where mez ∈ T is a lattice translation
and therefore Dk({1|mez}) = e−imkz1, which has eigenvalues
e−imkz ; thus, eigenvalues of Dk(S�

n ) are (n/�)th roots of e−imkz .
Next, we define the operator

D′
k2D

(Cn) = ei 1
n (mkz+2π p′ )Dk(Sn), (20)

which is a symmetry of the 2D Hamiltonian for any p′ ∈ Z:

D′
k2D

(Cn)Hkz (C
−1
n k2D)D′

k2D
(Cn)−1 = Hkz (k2D). (21)

We observe that D′
k2D

(Cn) [together with D′
k2D

({1|t2D}) =
Dk({1|t2D})] furnishes a representation of the 2D space group
pn (i.e., the 2D symmetry group generated by Cn rotation with
respect to a point and by translations). This implies that the
Hamiltonian Hkz describes a 2D system with Cn symmetry,
and that the rotation eigenvalues of its energy bands at a
Cn/�-invariant HSP � are

r (n/�)
p,p′ = e2π i p+p′−1

n/� , (22)
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where we recognize e2π i p+p′−1
n/� = �

(n/�)
p+p′ as defined in Eq. (2).

With these eigenvalues, the symmetry-indicator formulas for
the corner charge in 2D systems with rotational symmetry C2,
C3, C4, and C6 [28,30], e.g., (A1)–(A3), can be directly applied
to compute the fractional hinge charges even for nonsymmor-
phic 3D SGs.

Note that a nontrivial symmetry of the formulas for the
corner charges can now be easily deduced. Namely, the
nonuniqueness of Eq. (20) due to the freedom of choosing
p′ ∈ Z implies that the symmetry-indicator formulas for the
corner charges must be symmetric under cyclic permutations
of the rotation eigenvalues (which correspond to the replace-
ment p′ �→ p′ + 1). In particular, this applies irrespective of
the nonsymmorphicity, as can be seen by setting m = 0 in the
symmetry Sn above. We are not aware whether this symmetry
has been previously pointed out, but it is easily verified ex-
plicitly for the symmetry class A (i.e., without time-reversal
symmetry), which we checked using the generating Wannier
configurations discussed in Appendix A of Ref. [30]. Time-
reversal symmetry implies that the number of bands with
rotation eigenvalues �(n/�)

p and (�(n/�)
p )

∗
must match; how-

ever, this matching will generically be lost after performing a
cyclic permutation of rotation eigenvalues. For this reason, the
symmetry-indicator formulas derived under the assumption
that time-reversal symmetry is present, i.e., Eqs. (A4) and
(A5), do not manifest the symmetry under cyclic permutations
of the rotation eigenvalues. If n is even, a reduced symmetry of
the symmetry-indicator formulas under p′ �→ p′ + n

2 remains.
In summary, we have shown that the fractional hinge

charges of nonsymmorphic crystals in wire geometry with
screw symmetry {Cn|m

n ez} are characterized by the same
symmetry-indicator formulas that apply for corner charges in
2D systems with rotational symmetry Cn, after the kz depen-
dence of the screw eigenvalues is removed. It remains to be
shown that this removal is compatible with the identification
of ICRs of the little group with those of the little cogroup
described in Ref. [59]. This task is left for Sec. VII B.

B. Bulk-hinge correspondence of TPPs

The characterization of TPs reproduced in Table I is
phrased in terms of ICRs of the little cogroup Gk of the HSL
on which the TPs lie, even though the symmetry constraints
on the nodal-line structure near the TPs involve the ICRs of
the little group Gk. For symmorphic SGs, this is explained by
the fact that the ICRs of Gk restricted to elements {R|0} ∈ Gk

(forming a group isomorphic to Gk) are identical to the ones
of Gk: the ICR ς of Gk is injectively mapped to the ICR ρ of
Gk by

∀ {R|0} ∈ Gk : ρ(R) = ς ({R|0}). (23)

For nonsymmorphic SGs, on the other hand, this is not the
case. Nevertheless, we have shown in Ref. [59] that for little
groups that support TPs a different mapping between ICRs
ς of Gk restricted to Gk and ICRs ρ of Gk exists (see Ap-
pendix A in Ref. [59]): Let ς1D be any 1D ICR of Gk (e.g.,
the one that facilitates the formation of the discussed TP), then
the ICR ς of Gk is injectively mapped to the ICR ρ of Gk by

∀ {R|v} ∈ Gk : ρ(R) = ς1D({R|v})−1ς ({R|v}). (24)

Note that, in contrast to the symmorphic case, the restriction
of ς to Gk is not a representation of Gk but a projective
representation.

Here, we are interested in the rotation eigenvalues at HSLs,
i.e., the eigenvalues of ρ(Cn/�) at momenta invariant under
Cn/� symmetry. It follows from Eq. (24) that the eigenvalues
s(n/�) of ς (Sn/�) and r (n/�) of ρ(Cn/�) are related as

r (n/�) = ρ1D(Sn/�)−1s(n/�). (25)

However, as a 1D ICR, ρ1D(Sn/�) must be one of the eigenval-
ues defined in Eq. (19), i.e., s(n/�)

p̃ for some p̃ ∈ Z. Then,

r (n/�) = ei 1
n [mkz−2π ( p̃−1)]s(n/�), (26)

which is fully compatible with Eq. (20) for p′ = 1 − p̃ in
the sense that if s(n/�) is one of the eigenvalues of Dk(Sn),
then r (n/�) is the corresponding eigenvalue of D′

k2D
(Cn). In

particular, we observe that the kz dependence on the right-
hand side of Eq. (26) cancels, and r (n/�) does not depend on kz.

Given a TPP formed by four bands transforming accord-
ing to certain ICRs of the little group, the relevant rotation
eigenvalues used to compute the hinge-charge jump should be
obtained by applying the construction described in Sec. VII A.
However, the preceding paragraph implies that the same re-
sults are obtained if we first map the ICRs of the little group
to ICRs of the little cogroup [cf. Eq. (24)] and then apply
the symmetry-indicator formulas in (A1)–(A3) to the rotation
eigenvalues obtained from the ICRs of the little cogroup. In
fact, the nonuniqueness of ρ1D in Eq. (24) (if 1D ICRs of
Gk exist) amounts precisely to the nonuniqueness of p′ in
Eq. (20), further evincing how the two presented descriptions
are two facets of the same argument. We therefore conclude
that both the TP types and the hinge-charge jumps can be
determined from the ICRs of the little cogroup, which implies
that the bulk-hinge correspondence derived in Sec. IV C di-
rectly applies to nonsymmorphic SGs as well.

VIII. TRIPLE POINTS IN SPINFUL BAND STRUCTURES

The presented analysis of the higher-order bulk-boundary
correspondence of TPPs is easy to generalize to the spinful
case. According to the classification of TPs by Ref. [49], in
spinful systems without magnetic order, TPs can be protected
on the HSLs �A, KH , and K ′H ′ of SGs with threefold ro-
tational symmetry. Only two magnetic point groups (as little
cogroups of HSLs) can protect TPs: C3v (3m) resulting in
type-B TPs, and C3v supplemented with mzT (6̄′m2′) re-
sulting in type-A TPs. The spinful ICRs of the two MPGs
are equivalent, such that we do not need to consider them
separately for the discussion of the hinge-charge jump and
of the bulk-polarization jump (which only depend on the
rotation eigenvalues). The main difference between the two
cases is that the additional antiunitary symmetry mzT in 6̄′m2′
forces the NL arcs (characteristic of type-B TPs) to coalesce
on the rotation axis, resulting in the type-A TPs. For both
MPGs there are two spinful 1D ICRs ρ1D

1 , ρ1D
2 and only

a single spinful 2D ICR ρ2D, giving rise to three different
TPPs (ρ2D; ρ1D

a , ρ1D
b ) with a, b ∈ {1, 2}. However, ρ1D

1 and
ρ1D

2 have identical rotation eigenvalues; therefore, they are not
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distinguished in the corresponding symmetry indicators, and
they all result in the same value of jumps 	Q� and 	P.

For simplicity, we restrict the explicit analysis to the case
when the C3 rotation center of the sample resides at the 1a
WP (a straightforward analysis using the symmetry-indicator
formulas from Ref. [30] reveals that our results remain true if
the rotation center resides at WP 1b or 1c). Similar to Sec. IV,
we set all ionic charge to WP 1a. Then, the corner charge on
a 2D cut is given by (cf. class A in Ref. [30])

Q(3)
� = e

3

([
K (3)

1

] + [
K (3)

2

] + [
K ′

1
(3)] + [

K ′
2

(3)]) mod e.

(27)
The square brackets are defined in the exact same way as in the
spinless case, [�(n)

p ] = #�(n)
p − #�(n)

p ; however the labeling of
rotation eigenvalues in Eq. (2) is replaced by

�(n)
p = e2π i(p−1)/neπ i/n, p = 1, 2, . . . , n. (28)

The bulk polarization can similarly be expressed in terms of
the symmetry indicators as [29,30]

P(3) = e

3

(
2
[
K (3)

1

] + [
K (3)

2

] + [
K ′

1
(3)]

+2
[
K ′

2
(3)])(a1 + a2) mod eR. (29)

By performing an analysis (not appended) similar to the
one detailed in Appendixes A 3 and A 4 for the spinless case,
we derive the bulk-hinge correspondence for spinful TPPs in
triangular geometry. Independent of the HSL on which the
TPP lies and regardless of the WP of the rotation center, the
hinge-charge jump is universally found to be

	Q� = e

3
mod e (30)

and the jump of the bulk polarization

	P = 0 mod eR. (31)

We observe that even in spinful systems, all TPPs carry frac-
tional hinge-charge jump.

The derived results directly apply to TPPs reported in WC-
type crystalline materials reported by Ref. [49]. In particular,
TaN exhibits a type-(A, A) TPP characterized by a hinge-
charge jump e

3 along the �A line. Furthermore, this material is
very close to the ideal semimetallic TPP case, with only small
additional Fermi pockets around the K point and A point of the
BZ. We have considered extracting the predicted hinge-charge
jump for TaN from first-principles calculations (as we have
done for Sc3AlC under strain), however, the absence of a
surface gap has prevented us from doing so. In the future,
a systematic check of the materials that host TPPs for open
surface gaps could lead to a better material candidate.

IX. CONCLUSIONS AND OUTLOOKS

In this work we exposed higher-order topological finger-
prints of triple nodal points (TPs) in three dimensions (3D).
Our focus has been on the spinless case, where one encounters
an interplay of band nodes with a rich topological structure:
nodal lines (NLs) can be protected by mirror (mv) planes,
NLs governed by non-Abelian topology and equipped with
monopole charges can be stabilized by space-time inversion
(PT ) symmetry, and either species of NLs can be pinned to

high-symmetry lines (HSLs) by rotation (Cn) or antiunitary
rotation (CnPT ) symmetry. In particular, triple-point pairs
[TPPs; formed when a 2D irreducible corepresentation (ICR)
crosses a pair of 1D ICRs] are semimetallic features where a
NL along a HSL is transferred across three adjacent energy
gaps.

The rich topological structure of spinless systems sup-
porting TPs prompted us to analyze HSLs with 13 distinct
magnetic little cogroups, summarized by Table I. The main
finding of our analysis is that triple-point pairs demarcated
by a pair of type-A or by a pair of type-B TPs are generally
characterized by a fractional jump of the hinge charge. These
results apply also to nonsymmorphic space groups. On top
of the spinless analysis, in the last section we briefly consid-
ered the spinful case, where TPs arise in the presence of C3v

symmetry, and where a fractional hinge-charge jump is also
predicted to be a universal higher-order feature of TPPs. Note
that while three-dimensional Weyl nodes and Dirac nodes
exist in both the higher-order [40–47] and first-order [87,109]
varieties, we report that all type-(A, A) and type-(B, B) TPPs
are universally associated with the higher-order bulk-hinge
correspondence. Our finding thus overcomes the previous
unsuccessful search for a general bulk-boundary characteriza-
tion of TPs in surface states [49,52,57,61], as conventionally
associated with first-order topology.

Although our analysis in the presence of C4 rotational
symmetry explicitly assumed a primitive tetragonal Bravais
lattice, the result in Table II generalizes with no alterations
to the body-centered tetragonal case. To understand this,
note that the derivation of the hinge-charge jump (cf. Ap-
pendix A 3 b) is based on considering a two-dimensional (2D)
system with C4 symmetry. It is found that (1) the ICRs at the
� and at the M point of the 2D square lattice are identical, and
that (2) the corner-charge jump associated with a band inver-
sion of a 2D ICR with two 1D ICRs is also identical for both
the � and at the M point. The 3D models with tetragonal (ei-
ther primitive or body-centered) symmetry are obtained from
the 2D systems by interpreting the band-inversion-tuning
parameter as a third momentum component kz. The differ-
ence between the two Bravais lattices merely corresponds to
the way the periodically changing Hamiltonians Hkz (k2D) =
Hkz+2π (k2D) are glued together: for the body-centered case,
Hkz (k2D) = Hkz+π (k2D + � − M ), whereas such a constraint
is absent for the primitive case. It is clear that the mathemati-
cal analysis of the hinge-charge jump in Sec. IV C leading to
Table II applies irrespective of this additional constraint. An
analogous argument in the presence of C3 also reveals why in
the trigonal case we find identical classification of TPPs along
the lines �, K , and K ′.

While the presented spinless material Sc3AlC [57] requires
unrealistic values of applied strain to realize the quantized
hinge-charge jump, our analysis demonstrates that the dis-
cussed phenomenology could conceivably be realized and
observed in crystalline solids if more appropriate compounds
are identified in the future. Furthermore, metamaterial realiza-
tions (e.g., in acoustics, similar to those of Refs. [42,47]) are
definitely feasible.

Finally, it is interesting to speculate whether a similar uni-
versal higher-order bulk-boundary correspondence extends to
other previously reported one-dimensional nodal structures;
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for example, aside from the nodal-line segment spanned by
a TPP which has been considered by this work, nodal-line
chains [66,90,110], gyroscopes [35,111,112], and starfruits
[113] were proposed. They all require crossing of bands with
particular choices of symmetry eigenvalues which is associ-
ated with a change of the symmetry indicators, potentially
implying similar phenomenology of higher-order topological
hinge-charge jumps. Given the numerous material candidates
for the various nodal-line compositions, it should be of the-
oretical as well as of experimental interest to consider such
generalizations in the future.

We provide access to all the data and code necessary to
reproduce the results presented here in the supplementary data
and code [114].
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APPENDIX A: CORNER AND HINGE CHARGES

In this Appendix we derive various statements presented
in Sec. IV in relation to the second Stiefel-Whitney (2SW)
class and hinge charges. For reference, we include the relevant
symmetry-indicator formulas for the corner charge of spinless
2D systems with Cn symmetry [28,30], including both the
case without (with) spinless time-reversal symmetry, in Ap-
pendix A 1. Next, in Appendix A 2 we show that in spinless
2D systems with C2T and Cn symmetries, where n = 4, 6, the
2SW class can be written in terms of C4 and C6 symmetry
indicators. In particular, we prove Eq. (6) from Sec. IV A.
Then, in Appendix A 3 we consider triple-point pairs (TPPs),
i.e., pairs of triple points (TPs) formed by consecutive triplets
of bands, protected by Cn symmetry, where n = 3, 4, 6, in
spinless systems with PT symmetry. We derive Table II pre-
sented in Sec. IV C which gives the jumps in the 2SW class of
2D cuts and in the hinge charge for the different combinations
of irreducible corepresentations. Finally, in Appendix A 4 we
discuss why TPPs are not associated with a jump in the sur-
face charge.

1. Symmetry-indicator formulas for the corner charge

Here we list the symmetry-indicator formulas for the cor-
ner charges Q(n)

�,mX of 2D crystals with Cn symmetry in the
corresponding geometries shown in Fig. 7(a) with the center
of the sample located at the Wyckoff position (WP) mX (cf.
Ref. [30] for the labeling of WPs). In all cases we assume that
the ionic charges are placed at WP 1a and we use the notation
of Ref. [28], defined in Eqs. (2) and (3), for the labeling of
rotation eigenvalues and symmetry indicators.

In the absence of time-reversal symmetry (symmetry class
A), Ref. [30] derives the formulas to be the following: for
n = 3,

Q(3)
�,1a = e

3

([
K (3)

1

] + [
K (3)

2

] + [
K ′

1
(3)] + [

K ′
2

(3)]) mod e,

(A1a)

Q(3)
�,1b = − e

3

([
K (3)

1

] + [
K ′

2
(3)]) mod e, (A1b)

Q(3)
�,1c = − e

3

([
K (3)

2

] + [
K ′

1
(3)]) mod e; (A1c)

for n = 4,

Q(4)
�,1a = e

4

(
−[

X (2)
1

] + 1

2

[
M (4)

1

] − 3

2

[
M (4)

3

])
mod e,

(A2a)

Q(4)
�,1b = e

4

([
X (2)

1

] − 3

2

[
M (4)

1

] + 1

2

[
M (4)

3

])
mod e;

(A2b)

and for n = 6,

Q(6)
�,1a = − e

6

(
2
[
K (3)

1

] + 3

2

[
M (2)

1

])
. (A3)

If spinless time-reversal symmetry T satisfying T 2 = +1

is present, i.e., in symmetry class AI, the formulas simplify
due to constraints on the topological invariants [�(n)

p ] [30]. In
our work, this case only occurs for n = 4,

Q(4)
�,1a = e

4

(−[
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
mod e, (A4a)

Q(4)
�,1b = e

4

([
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
mod e, (A4b)

and for n = 6,

Q(6)
�,1a = e

4

[
M (2)

1

] + e

6

[
K (3)

1

]
mod e. (A5)

Finally, we also need the formula for n = 2, which is given in
Ref. [28]:

Q(2)
�,1a = e

4

(−[
X (2)

1

] − [
Y (2)

1

] + [
M (2)

1

])
mod e. (A6)

2. Stiefel-Whitney insulators with rotational symmetry

a. C4 symmetry

We first consider C4 symmetry. The four time-reversal-
invariant momenta are �, X , X ′, and M, where X and X ′
are equivalent. According to Eq. (5) a nontrivial 2SW class
is equivalent to⌊

1
2 #�

(2)
2

⌋ + 2
⌊

1
2 #X (2)

2

⌋ + ⌊
1
2 #M (2)

2

⌋ = 1 mod 2. (A7)

This does not constrain #X (2)
2 at all, but it is equivalent to

either ⌊
1
2 #�

(2)
2

⌋ = 0 mod 2 ∧ ⌊
1
2 #M (2)

2

⌋ = 1 mod 2

⇔ #�
(2)
2 ∈ {0, 1} mod 4 ∧ #M (2)

2 ∈ {2, 3} mod 4

⇒ #M (2)
2 − #�

(2)
2 =:

[
M (2)

2

] ∈ {1, 2, 3} mod 4

or the same with � and M exchanged, where the latter im-
plies [M (2)

2 ] ∈ {1, 2, 3} mod 4 as well. Thus, w2 = 1 implies
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[M (2)
2 ] ∈ {1, 2, 3} mod 4. On the other hand, w2 = 0 implies⌊

1
2 #�

(2)
2

⌋ = ⌊
1
2 #M (2)

2

⌋
mod 2

⇒ [
M (2)

2

] ∈ {0, 1, 3} mod 4.

Furthermore, time reversal combined with C4 symmetry imply
[28] that [M (4)

2 ] = [M (4)
4 ], such that together with [M (2)

2 ] =
[M (4)

2 ] + [M (4)
4 ] (which follows from C2

4 = C2) we find[
M (2)

2

] = 2
[
M (4)

2

]
. (A8)

Therefore, [M (2)
2 ] has to be even. Since we already restricted

[M (2)
2 ] for w2 = 1 to the set {1, 2, 3} mod 4 (and to the set

{0, 1, 3} mod 4 for w1 = 0), selecting the even element of
the corresponding set results in

w2 = 1
2

[
M (2)

2

]
mod 2 = [

M (4)
2

]
mod 2. (A9)

Finally, using Eq. (A9) and assuming vanishing bulk polariza-
tion, [X (2)

1 ] = 0 [28], we can rewrite Eq. (4a) as

Q(4)
� = e

4

(
2
[
M (4)

1

] + 3w2
)

mod
e

2
. (A10)

We observe that for w2 = 1 the term in the brackets is an odd
integer, while it is an even integer for w2 = 0. This restricts
the fractional part of Q(4)

� to ± e
4 in the first, and to 0 or e

2 in
the second case.

b. C6 symmetry

Next, we consider C6 symmetry, where the four time-
reversal-invariant momenta are �, M, M ′, and M ′′ with the
latter three being equivalent. Correspondingly,


 1
2 #�

(2)
2 � + 3
 1

2 #M (2)
2 � = 1 mod 2. (A11)

A nontrivial value w2 = 1 implies, in analogy with the anal-
ysis of the C4-symmetric case, that[

M (2)
2

] ∈ {1, 2, 3} mod 4, (A12)

while w2 = 0 implies[
M (2)

2

] ∈ {0, 1, 3} mod 4. (A13)

For the next step in our reasoning we need to apply the
following property: if [M (2)

1 ] = 1 mod 2, then the bulk is
necessarily gapless. This can be seen as follows. By as-
sumption, the number of occupied bands with C2-rotation
eigenvalue 1 changes by an odd number between � and M:

#M (2)
1 − #�

(2)
1 = [M (2)

1 ] = 1 mod 2. (A14)

Since the C2 symmetry acts as inversion on the 1D BZ
segment �M�, Eq. (A14) implies [34] that the occupied
bands carry a total Berry phase π on that segment. We further
consider the triangle formed by the �M� paths of the three
BZs around a K point, as illustrated in Fig. 21. Due to the
sixfold rotational symmetry the three sides of the triangle
all contribute π mod 2π to the Berry phase, such that the
total Berry phase along the triangular contour is π mod 2π ,
indicating that there are an odd number of band nodes (formed
between the occupied and the unoccupied bands) inside the
triangle, i.e., the bulk is gapless. Conversely, a gapped bulk
implies [M (2)

1 ] = 0 mod 2. Noting that [M (2)
1 ] = −[M (2)

2 ]

FIG. 21. Three hexagonal Brillouin zones around a K point of a
C6-symmetric model. Assuming [M (2)

1 ] = 1 mod 2 the total Berry
phase φ�M� of the occupied bands along the closed contour �M�

equals π (cf. Appendix A 2 b). Therefore, the Berry phase along the
triangular contour (green) is also φ� = 3π = π mod 2π . The result
implies that the triangle encloses an odd number of band nodes in the
principal gap (red disks), i.e., the system is not an insulator.

(because
∑n

p=1[�(n)
p ] = 0 [28]), an insulating bulk band

structure equivalently requires [M (2)
2 ] to be even. Therefore,

w2 = 1
2

[
M (2)

1

]
mod 2. (A15)

Using Eq. (A15) (and noting that for C6-symmetric systems
the bulk polarization always vanishes [28]), we can rewrite
Eq. (4b) for the corner charge as

Q(6)
� = e

6

([
K (3)

1

] + 3w2
)

mod e. (A16)

It follows from time-reversal symmetry that at HSPs states
have either real rotation eigenvalues or come in pairs with
complex-conjugate rotation eigenvalues. In particular, this im-
plies that [K (3)

2 ] = [K (3)
3 ] and because of the same number of

filled bands at points K and �, it follows that[
K (3)

1

] = −[
K (3)

2

] − [
K (3)

3

] = 0 mod 2, (A17)

i.e., [K (3)
1 ] is an even integer. Thus, the term in brackets in

Eq. (A16) is an odd integer for w2 = 1 and an even integer for
w2 = 0. This restricts Q(6)

� to ± e
6 or e

2 in the first case, and to
0 or ± e

3 in the second case.

3. Hinge-charge jump and 2SW monopole due to triple points

We start from the classification of TPs in spinless PT -
symmetric systems as presented in Ref. [60] for little cogroups
Gk = C3(v),C4(v),C6(v) of some high-symmetry line (HSL)
and we consider the situation depicted in Fig. 9. We compare
quantities in the orange kz range (to the left of the first TP,
where the 2D ICR ρ2D is occupied) and the blue kz range
(to the right of the second TP, where the two 1D ICRs ρ1D

a
and ρ1D

b are occupied). For the ICRs the notation of Ref. [65]
is used. In particular, when defining the changes 	Q� and
	w2, we subtract the first (orange kz range) from the latter
(blue kz range). For each 2D or 1D ICR ρ of Gk ∪ (PT )Gk,
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TABLE IV. Rotation eigenvalues and symmetry indicators for all
irreducible corepresentations of C3(v) with PT at a high-symmetry
point � = �, K, K ′ of a C3-symmetric system or at � = K of a C6-
symmetric system. The list of ICRs is unchanged if PT symmetry is
removed in the case of C3v .

Symmetry
ICRs for Eigenvalue of indicators at �

C3v C3 C3 #�
(3)
1 #�

(3)
2

A1, A2 A1 1 1 0
E 2E 1E e2π i/3, e−2π i/3 0 1

we look up the corresponding rotation eigenvalues on the
Bilbao crystallographic server (BCS) [103–105] using the
program COREPRESENTATIONS PG [82,83] and, assuming there
are no other band inversions in the principal gap, compute
the relevant symmetry indicators (see Tables IV, V,and VII).
Before proceeding with the mathematical analysis, we make
two remarks. First, note that the HSL on which the TPs lie
does not need to go through the center of the BZ (point � of
the 2D cut). Namely, the little cogroup C3(v) is also realized at
the K point(s) of space groups (SGs) with threefold or sixfold
rotational symmetry, while C4(v) is also realized at M points
of SGs with fourfold rotational symmetry.

In all cases we assume that the SG contains PT , acting
as (C2T )2D in the 2D cuts, and Cn with order n ∈ {3, 4, 6}.
Furthermore, we place all ionic charge at the center of the
unit cell because, ultimately, we are interested in the change
of the corner charge as a function of kz and the ionic charge
distribution does not depend on kz. If the system symmetry is
C3, then T2D ( = C2PT = mzT ) is not present, such that the
corner charge is given by Eq. (A1). For SG symmetries with
rotation of order n = 4, 6, the C2 combines with PT to give
C2PT = T2D, such that we can apply the simplified formulas
(A4) and (A5). For the 2SW class, we use the results of the
previous subsection, i.e., Eqs. (A9) and (A15).

We next go in detail through all the possible cases.

a. Triple points along C3(v)-symmetric lines

For C3(v) there is only one possible configuration of two
TPs, namely, the one with ICRs (E ; A, A). The symme-
try indicators (cf. Table IV) imply that 	#�

(3)
1 = 2 and

	#�
(3)
2 = −1.

Let us first consider TPs occurring along the HSL � = �

of a C3-symmetric system. If the rotation center of the sample
lies at WP 1a, then 	[K (3)

p ] = 	[K ′(3)
p ] = −	#�(3)

p . Then,

TABLE V. Rotation eigenvalues and symmetry indicators for all
irreducible corepresentations of C4(v) with PT at a high-symmetry
point � = �, M of a C4-symmetric system. The list of ICRs is
unchanged if PT symmetry is removed in the case of C4v .

ICRs for Eigenvalues of Symmetry indicators at �

C4v C4 C2 C4 #�
(2)
1 #�

(4)
1 #�

(4)
2

A1, A2 A 1 1 1 1 0
B1, B2 B 1 −1 1 0 0
E E −1, −1 i, −i 0 0 1

according to Eq. (A1a), the hinge-charge jump is

	Q(3)
�,1a = −2e

3

(
	#�

(3)
1 + 	#�

(3)
2

)
mod e = e

3
mod e.

(A18)
If the TPs instead occur along HSL � = K (or equivalently
K ′) of a C3-symmetric system (with rotation center still set to
1a, then 	[K (3)

p ] = 	#K (3)
p such that

	Q(3)
�,1a = e

3

(
	#K (3)

1 + 	#K (3)
2

)
mod e = e

3
mod e. (A19)

It is easily verified by using Eqs. (A1b) and (A1c) that the
derived results for 	Q� remain unchanged if the rotation
center of the finite system is instead located at WP 1b or 1c.

If � = K of a C6-symmetric system, then we need to use
Eq. (A5) instead, resulting in the same

	Q(6)
� = e

6
	#K (3)

1 mod e = e

3
mod e. (A20)

This concludes the derivation of 	Q(n)
� = e

3 mod e for TPPs
along C3(v)-symmetric lines.

We briefly analyze the jump 	w2 of the 2SW class. We
have argued in Sec. IV C and demonstrated in Sec. V D that
the 2SW class is not symmetry indicated for C3-symmetric
systems. For C6, on the other hand, we use Eq. (A15) to find

	w2 = 1
2	

[
M (2)

1

] = 0, (A21)

because, by assumption, there is neither a band inversion at �

nor at M.

b. Triple points along C4(v)-symmetric lines

Next, we consider C4(v)-symmetric lines with ICRs and
symmetry indicators given in Table V. Here, we need to dis-
tinguish three TP configurations [namely, (E ; A, A), (E ; B, B),
and (E ; A, B)] and two HSLs (namely, � = � and K). The
differences 	#�

(2)
1 , 	#�

(4)
1 , and 	#�

(4)
2 for the various TP

configurations are listed in Table VI. By recalling Eq. (A9),
we find that for all cases

	w2 = 	
[
M (4)

2

]
mod 2 = 1 mod 2, (A22)

in agreement with the fact that the TPs are type A (cf.
Sec. III A).

To identify the jump in the hinge charge, we have to
analyze the two HSLs separately. First, for � = � we have
	[P(n)

p ] = −	#�(n)
p for both P ∈ {K, M}, and the change in

corner charge is given by

	Q(4)
� = − e

4

(∓	#�
(2)
1 + 2	#�

(4)
1 + 3	#�

(4)
2

)
mod e,

(A23)
where the negative (positive) sign of 	#�

(2)
1 corresponds to

setting the center of the system to WP 1a (1b). Observe in
Table V that 	�

(2)
1 is even for all TPPs, which means that the

“∓” sign ambiguity is unimportant, and both WPs lead to the
same value of the hinge-charge jump.

In contrast, for � = M we obtain contributions from
	[M (4)

p ] = 	#M (4)
p , leading to

	Q(4)
� = e

4

(
2	#M (4)

1 + 3	#M (4)
2

)
mod e. (A24)

Careful evaluation of Eqs. (A23), (A24), and (A32) for all
combinations of ICRs gives the following results: For TPPs
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TABLE VI. Changes in symmetry indicators (	#�(n)
p ), hinge

charge (	Q(4)
� ) and second Stiefel-Whitney class (	w2) associ-

ated with the different configurations of triple-point pairs (TPPs).
Each TPP is specified by the irreducible corepresentations (ICRs)
(ρ2D; ρ1D

a , ρ1D
b ) on a fourfold rotation axis, corresponding to the

high-symmetry point � = �, M in a 2D cut perpendicular to the
rotation axis. The changes are defined by subtracting the characteris-
tics of the systems with ρ2D occupied from those of the system with
ρ1D

a,b occupied. The hinge-charge jump is computed using Eq. (A23)
for � = � and Eq. (A24) for � = M, while 	w2 is computed from
Eq. (A9).

ICRs (E ; A, A) (E ; B, B)

	#�
(2)
1 2 2

	#�
(4)
1 2 0

	#�
(4)
2 −1 −1

	Q(4)
� mod e + e

4 + e
4

	w2 mod 2 1 1

along either � or M, 	Q(4)
� = e

4 for both (E ; A, A) and
(E ; B, B). The results are summarized in Table VI.

c. Triple points along C6(v)-symmetric lines

There is only one HSL with little cogroup C6(v) (namely,
� in C6-symmetric systems), and considering the possible
crossings of ICRs (listed in Table VII) results in six distinct
TPP configurations. We first focus on the cases where the two
TPs are of the same type, which gives the four TPPs listed
in Table VIII. By combining 	[�(n)

p ] = −	#�(n)
p (for � ∈

{M, K}) with Eqs. (A5) and (A15), we calculate the jumps

	Q(6)
� = − e

4
	#�

(2)
1 − e

6
	#�

(3)
1 mod e, (A25)

	w2 = −1

2
	#�

(2)
1 mod 2. (A26)

The computed values of 	Q(6)
� and of 	w2 for all the TPPs

where both TPs are of the same type are listed in Table VIII.
We find that a nontrivial change of the 2SW class, which
occurs for two type-A TPs, is associated with a hinge-charge
jump 	Q(6)

� = + e
6 . In contrast, pairs of type-B TPs are

characterized by trivial 	w2 = 0 and are associated with a
hinge-charge jump of 	Q(6)

� = − e
3 .

TABLE VII. Rotation eigenvalues and symmetry indicators for
all irreducible corepresentations of C6(v) with PT at the high-
symmetry point � of a C6-symmetric system. The list of ICRs is
unchanged if PT symmetry is removed in the case of C6v .

Symmetry
ICRs for Eigenvalues of indicators at �

C6v C6 C2 C3 #�
(2)
1 #�

(3)
1

A1, A2 A 1 1 1 1
B1, B2 B −1 1 0 1
E1

2E 1
2 E2 −1, −1 e2π i/3, e−2π i/3 0 0

E2
2E 1

1 E1 1, 1 e2π i/3, e−2π i/3 2 0

TABLE VIII. Changes in symmetry indicators (	#�
(n)
1 ), hinge

charge (	Q(6)
� ), and second Stiefel-Whitney class (	w2) associ-

ated with the different configurations of triple-point pairs (TPPs)
along the � line of C6-symmetric systems. Each TPP is specified
by the irreducible corepresentations (ICRs) (ρ2D; ρ1D

a , ρ1D
b ) along

the � line. For simplicity we use the labels of ICRs for C6v , the
corresponding notation for C6 can be extracted from Table VII. The
changes are defined by subtracting the characteristics of the systems
with ρ2D occupied from those of the system with ρ1D

a,b occupied. The
values of 	Q(6)

� and 	w2 are computed from Eq. (A25) and (A26),
respectively.

TP types (A, A) (B, B)

ICRs (E1; Ai, Aj ) (E2; Bi, Bj ) (E1; Bi, Bj ) (E2; Ai, Aj )

	#�
(2)
1 2 −2 0 0

	#�
(3)
1 2 2 2 2

	Q(6)
� mod e + e

6 + e
6 − e

3 − e
3

	w2 mod 2 1 1 0 0

Finally, there is the possibility to have two TPs of different
types, i.e., one type A and one type B, by choosing one
of the following ICR combinations: (E1; Ai, Bj ), (E2; Ai, Bj ).
In these two cases, we find that 	[M (2)

1 ] = −	#�
(2)
1 = 1

mod 2 (i.e., it is an odd number). This implies that the value
of [M (2)

1 ] must be odd on one side of the TPP. However, recall
from Appendix A 2 that a gapped bulk requires [M (2)

1 ] = 0
mod 2. It therefore follows that the bulk is necessarily gapless
on one side of the TPP, such that the hinge-charge jump
cannot be defined in this case. This finding is consistent with
the intuitive explanation given in the main text, where the
different type of the two TPs forces the attached NL arcs to
cross the orange or blue kz range. In Fig. 10(c). a 2D cut in the
orange kz range would correspond to the situation shown in
Fig. 21 with the red disks corresponding to places where the
red attached NL arcs cross the 2D cut.

4. No jump of the surface charge due to triple points

For the hinge-charge jump to be observable, it is important
that the surface charge (more precisely, the surface charge
density; this corresponds to the edge charge density of the 2D
cuts at fixed kz) is vanishing [28] for the kz ranges on both
sides of the TPP. This can only be true if the jump of the
surface charge associated with the TPP is zero. Here we show
that this is indeed true for all the TPPs shown in Table II.

Before deriving the desired fact mathematically from the
corresponding symmetry-indicator formulas, let us present a
simple argument based on the quantization of Berry phase.
Namely, recall that for a boundary of a high-symmetry orien-
tation with respect to the crystalline axes, the surface charge
is in a one-to-one correspondence [81] with the Berry phase
along a closed momentum-space (k) path along the direc-
tion perpendicular to the considered surface. Here, first recall
[59,60] that stable TPs require the presence of either PT
symmetry (in which case the Berry phase is quantized to 0
vs π on any closed k path due to the reality condition [68]) or
of mv mirror symmetry (in which case the mirror symmetry
acts like inversion on the straight k paths perpendicular to the
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boundaries considered in Figs. 2, 14, and 15, thus quantizing
the Berry phase of interest to 0 vs π [115]).

The quantization of the Berry phase implies that the surface
charge can only change if the k paths of the required orienta-
tion encounter a bulk nodal line (carrying the π quantum of
Berry phase). However, a look at Fig. 10 reveals that for both
type-(A, A) and type-(B, B) TPPs it is possible to continu-
ously shift a horizontal k path from the orange kz range to the
blue kz range without encountering any (red) nodal line in the
principal gap. We therefore anticipate the surface charge to
be identical in both kz ranges (and therefore the hinge-charge
jump to be observable) at least when the boundaries are ori-
ented symmetrically with respect to the crystal axes.

More formally, we now derive the same conclusion for
an arbitrarily oriented Cn-symmetric system. In such a case
the surface charge density of a gapped 2D crystal is given
[80] by σsurf = P · n̂, where P is the bulk polarization and n̂
the surface normal. To prove that 	σsurf = 0 across the TPP
for arbitrary boundary termination, it needs to be true that
	P · n̂ = 0 when moving across the TPP. Similar to the corner
charge, the bulk polarization P(n) of a 2D crystal with Cn rota-
tional symmetry can be expressed [28–30] using symmetry
indicators. For C3-symmetric crystals, we use the result of
Refs. [29,30] which does not assume time-reversal symmetry
to be present,

P(3) = e

3

(
2
[
K (3)

1

] + [
K ′

1
(3)] + [

K (3)
2

]
+ 2

[
K ′

2
(3)])(a1 + a2) mod eR, (A27)

while for Cn with n = 4, 6, we can use the simplified expres-
sions from Ref. [28]:

P(4) = e

2

[
X (2)

1

]
(a1 + a2) mod eR, (A28)

P(6) = 0 mod eR. (A29)

Here, a1 and a2 are lattice basis vectors and R = m1a1 + m2a2

with m1, m2 ∈ Z is a general Bravais lattice vector.
We now briefly apply the symmetry-indicator formulas

in Appendix A 4 [Eq. (A29)] to show that the polarization
jump 	P(n) associated with the TPPs in Cn-symmetric sys-
tems is always vanishing. First, for a TPP along the � line
of a C3-symmetric system [cf. Eq. (A18)], we obtain from
Appendix A 4 the jump of the bulk polarization

	P(3) = −e
(
	#�

(3)
1 + 	#�

(3)
2

)
(a1 + a2) mod eR

= 0 mod eR.
. (A30)

Similarly, for a TPP along the K line [cf. Eq. (A19)]

	P(3) = e

3

(
2	#K (3)

1 + 	#K (3)
2

)
(a1 + a2) mod eR

= 0 mod eR, (A31)

where we have read from Table IV that 	#K (3)
1 = 2 and

	#K (3)
2 = −1 for a TPP formed by ICRs (E ; Ai, Aj ).

Furthermore, note that per Appendix A 4 the polariza-
tion always vanishes in C6-symmetric systems. Therefore,
	P(6) = 0 mod eR for TPPs along both the K line [cf.
Eq. (A20)] and the � line [cf. Eq. (A25)] of C6-symmetric
systems. Next, for TPPs along the � line of C4-symmetric

systems [cf. Eq. (A23)] we find from Eq. (A28) that the
change in bulk polarization is

	P(4) = − e

2
	#�

(2)
1 (a1 + a2) mod eR

= 0 mod eR, (A32)

where we have read from Table VI that 	#�
(2)
1 is even for all

possible TPPs. Finally, note that TPPs along the M line [cf.
Eq. (A24)] do not have an effect on the symmetry indicator
[X (2)

1 ] in Eq. (A28), therefore, again 	P(4) = 0 mod eR. We
conclude that all TPPs listed in Table II are associated with
no jump in surface charge, thus making the hinge-charge
jump observable for an appropriate choice of the boundary
termination.

APPENDIX B: EULER MONOPOLE CHARGE IN
THE PRESENCE OF ROTATIONAL SYMMETRY

In this Appendix we derive the statements made in
Sec. IV B and apply them to triple-point pairs (TPPs) to find
the combinations of irreducible corepresentations (ICRs) that
necessarily lead to a gapless bulk on at least one side of the
TPP. Such TPPs cannot be associated with a higher-order
signature on the wire hinges; for brevity, we call them in-
admissible TPP configurations. For the remaining cases, we
determine the value of the Euler monopole charge given in
Table II. The analysis assumes the presence of space-time
inversion (PT ) symmetry unless explicitly stated otherwise
(a particular case of the latter is the entire Appendix B 5).

The presented arguments are based on analyzing the spec-
trum of Wilson-loop operators on certain appropriately chosen
paths. The Wilson-loop operators are defined in terms of
projectors onto occupied eigenstates |ui(k)〉 of the Bloch
HamiltonianH (k). We organize the occupied eigenstates into
an N × Nocc matrix

u(k) = (|u1(k)〉 |u2(k)〉 . . . |uNocc (k)〉), (B1)

where N is the total number of bands and Nocc is the number of
occupied bands. In the presence of PT symmetry satisfying
(PT )2 = +1, we always adopt a basis of the Hilbert space in
which PT is represented by complex conjugation K . Then,
the Bloch Hamiltonian is a real-symmetric matrix, and the
eigenstates [as well as the matrix u(k)] can be gauged to be
real. To determine the advertised properties of TPPs, we need
to study how the spectrum of the Wilson operator on certain
appropriately chosen paths is constrained by PT , mv , and Cn

symmetries.
The discussion in this Appendix is structured as follows.

In Appendix B 1 we study how Cn rotational symmetry con-
strains the Wilson-loop operator on an appropriately chosen
path, composed of two Cn-related segments. Next, in Ap-
pendix B 2, we use the previous result to relate the Berry phase
of the occupied bands on a particular choice of path to the Cn

eigenvalues of the occupied bands at the high-symmetry line,
and in Appendix B 3 we derive a symmetry-indicator formula
for the Euler monopole charge. Then, in Appendix B 4, we ap-
ply the previous two results to TPPs, identifying which TPPs
are inadmissible and giving the Euler monopole charge for
each admissible TPP configuration. Finally, in Appendix B 5
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we extend the discussion of inadmissible TPPs to systems
without PT symmetry.

1. Symmetry constraint on Wilson-loop operator

We define the following family of closed contours

�(φ) = γ (φ)−1 ◦ γ (0) (B2)

consisting of half circles given by γ (φ) : θ ∈ [0, π ] �→
γ (θ, φ) with

γ (θ, φ) = R

⎛
⎜⎝

sin(θ ) cos(φ)

sin(θ ) sin(φ)

− cos(θ )

⎞
⎟⎠. (B3)

One example of such a contour is illustrated in Fig. 8 in green
color. We abbreviate u(θ, φ) = u(γ (θ, φ)), u0 = u(0, φ), and
u1 = u(π, φ) for any φ ∈ [0, 2π ).

Given any closed path �(t ) defined on t ∈ [0, 1], the
Wilson-loop operator is defined by

W(�)mn = lim
δt→0

〈
um(�(1))

∣∣∣∣
1←0∏

t

P (�(t ))

∣∣∣∣un(�(0))

〉
, (B4)

where δt is the discretization of t in the product, the arrow
over the product symbol indicates the ordering of the factors
from small to large values of t (i.e., in this case factors with
smaller t are to the right), and

P (k) =
Nocc∑
j=1

|u j (k)〉〈u j (k)| (B5)

is the projector onto the occupied subspace. Observing that

u(k)u(k)† =
Nocc∑
j=1

|u j (k)〉〈u j (k)| = P (k), (B6)

we can rewrite the expression for the Wilson-loop operator in
matrix form (W is an Nocc × Nocc matrix)

W(�) = lim
δt→0

u(�(1))†
1←0∏

t

u(�(t ))u(�(t ))†u(�(0)). (B7)

The Wilson-loop operator for one of the closed contours
�(φ) defined above is then found to be

W(φ) =W(�(φ))

= lim
δθ→0

u†
0

[
0→π∏

θ

u(θ, φ)u(θ, φ)†

]

×
[

π←0∏
θ

u(θ, 0)u(θ, 0)†

]
u0. (B8)

Reordering the terms in the products, this becomes

= lim
δθ→0

u†
0u0

[
0→π−δθ∏

θ

u(θ, φ)†u(θ + δθ, φ)

]
u†

1

× u1

[
π−δθ←0∏

θ

u(θ + δθ, 0)†u(θ, 0)

]
u0

= lim
δθ→0

[
0→π−δθ∏

θ

V (θ, φ)†

][
π−δθ←0∏

θ

V (θ, 0)

]
u0 (B9)

with

V (θ, φ) = u(θ + δθ, φ)†u(θ, φ). (B10)

If we choose the real gauge along �(φ) by monodromy,
V (θ, φ) ∈ SO(Nocc).

The Cn rotational symmetry relates eigenstates at points in
momentum space related by that symmetry:

u(Cnk) = D(Cn)u(k)B(k), (B11)

where D(Cn) is the corepresentation matrix of Cn in the chosen
basis, i.e., where D(PT ) = 1, andB(k) ∈ O(Nocc) is a sewing
matrix [33]. Thus, for any θ, φ,

u
(

θ, φ + 2π

n

)
= D(Cn)u(θ, φ)B(θ, φ). (B12)

Substituting this into the expression for the Wilson-loop oper-
ator, we find

W
(

φ + 2π

n

)
= lim

δθ→0
u†

0

[
0→π∏

θ

D(Cn)u(θ, φ)u(θ, φ)†D(Cn)†

]

×
[

π←0∏
θ

u(θ, 0)u(θ, 0)†

]
u0, (B13)

where the sewing matrices canceled out. Reordering the terms
again,

= lim
δθ→0

u†
0D(Cn)u0

[
0→π−δθ∏

θ

u(θ, φ)†u(θ + δθ, φ)

]

× u†
1D(Cn)†u1

[
π−δθ←0∏

θ

u(θ + δθ, 0)†u(θ, 0)

]
u0. (B14)

Note that

u†
0D(Cn)u0 = D0(Cn),

u†
1D(Cn)u1 = D1(Cn) (B15)

gives the corepresentation matrices D0,1(Cn) of only the oc-
cupied bands at �(0) and �(1/2) (i.e., at the south and north
pole), respectively. Thus,

W
(

φ + 2π

n

)
= lim

δθ→0
D0(Cn)

[
0→π−δθ∏

θ

V (θ, φ)†

]

× D1(Cn)†

[
π−δθ←0∏

θ

V (θ, 0)

]
u0. (B16)

Defining

P(φ) =
[

π−δθ←0∏
θ

V (θ, φ)

]
∈ SO(Nocc), (B17)

we arrive at Eq. (9) of Sec. IV B:

W
(

φ + 2π

n

)
= D0(Cn)P(φ)†D1(Cn)†P(φ)W(φ). (B18)

085129-32



UNIVERSAL HIGHER-ORDER BULK-BOUNDARY … PHYSICAL REVIEW B 106, 085129 (2022)

2. Berry phase on a symmetric path

The constraint on the Wilson-loop operator derived above
has implications for the Berry phase of the occupied bands
computed on the contours �(φ). The Berry phase is given by
ϕ = arg detW, such that

ϕ

(
φ + 2π

n

)
= arg det [D0(Cn)P(φ)†D1(Cn)†P(φ)W(φ)].

Using that inside the determinant all matrices commute,

= arg detW(φ) + arg det
[
D0(Cn)D1(Cn)†

]
= ϕ(φ) + arg det

[
D0(Cn)D1(Cn)†

]
mod 2π, (B19)

which is exactly Eq. (10). The difference in Berry phase on
the two contours is found to be

	ϕ = arg det
[
D0(Cn)D1(Cn)†

]
. (B20)

Recall that in the presence of PT symmetry, the Berry
phase on any closed loop is (as well as their differences)
quantized to 0 vs π , and that the Berry curvature vanishes
identically away from the nodal lines [68]. It therefore fol-
lows that the trivial value 	ϕ = 0 indicates that there is an
even number of nodal lines enclosed by the contour γ (φ +
2π/n)−1 ◦ γ (φ), while a nontrivial value 	ϕ = π indicates
an odd number. This implies that each 2π

n sector of the spher-
ical surface is penetrated by an even (odd) number of nodal
lines in the principal gap and thus, if 	ϕ = π , that the surface
must contain gapless points.

3. Symmetry indicators for Euler monopole charge

We now specialize to the case where Nocc = 2 and assume
that D0,1(Cn) ∈ SO(2). Since the nth power of D0,1(Cn) gives
the identity, it follows that for j ∈ {0, 1},

Dj (Cn) = e− 2π i
n r j sy with r j ∈ Z (B21)

and Pauli matrices si acting on the space of the two valence
bands. Because SO(2) is an Abelian group, we find that

W
(

φ + 2π

n

)
= D0(Cn)D1(Cn)† lim

δθ→0

[
0→π−δθ∏

θ

V (θ, φ)†

]

×
[

π−δθ←0∏
θ

V (θ, 0)

]
u0

= D0(Cn)D1(Cn)†W(φ). (B22)

From the family of Wilson-loop operators W(φ) for φ ∈
[0, 2π ), the Euler class can be obtained [73]. SinceW(φ) ∈
SO(2), there is a ζ (φ) ∈ [0, 2π ) such that

W(φ) = eiζ (φ)sy (B23)

given by the Pfaffian of the logarithm

ζ (φ) = Pf[logW(φ)] mod 2π. (B24)

The phase ζ (φ) changes continuously in φ as long as the two-
band subspace is separated from the other bands by energy

gaps, and its winding number determines the Euler class as

χ = 1

2π

∫ 2π

0

dζ (φ)

dφ
= 1

2π
[ζ (2π ) − ζ (0)]. (B25)

We remark that the above expression should be read with
caution. Namely, a gauge transformation u0 �→ u0U with U ∈
O(2) at the base point of the closed path � transforms the
Wilson-loop operator as follows:

W(φ) �→ U �W(φ)U, (B26)

such that ζ (φ) �→ ζ ′(φ) with

ζ ′(φ) = Pf
{
log

[
U �W(φ)U

]}
mod 2π

= Pf
{
U � log [W(φ)]U

}
mod 2π.

Using that Pf(BAB�) = det(B)Pf(A), we obtain

= det(U )ζ (φ) mod 2. (B27)

Since det(U ) = ±1, the sign of ζ (φ) and therefore χ is gauge
dependent [73]. Therefore, the well-defined topological in-
variant that we can extract is the absolute value |χ | of the
Euler monopole charge.

Equation (B22) implies that

ζ

(
φ + 2π

n

)
= Pf

[
log e

2π i
n (r1−r0 )sy+iζ (φ)sy

]
= 2π

n
(r1 − r0) + ζ (φ) mod 2π (B28)

and applying that identity n times gives

ζ (φ + 2π ) = 2π (r1 − r0) + ζ (φ) mod 2π. (B29)

Therefore, the Euler class is

χ = r1 − r0 mod n. (B30)

Recall that the parity of χ is the second Stiefel-Whitney class

w2 = χ mod 2. (B31)

Observe that, for odd n, Eq. (B30) leaves the parity of χ

undetermined. It follows that for C3, w2 is not constrained by
symmetry, which is consistent with what we demonstrated in
Sec. V D.

4. Application to triple-point pairs

We apply the above results to TPPs formed by a 2D ICR
ρ2D and two 1D ICRs ρ1D

a , ρ1D
b . In that case the representation

matrices of Cn in the orange and blue kz ranges appearing in
Eqs. (B19) and (B30) are

D0(Cn) = ρ2D(Cn),

D1(Cn) = ρ1D
a (Cn) ⊕ ρ1D

b (Cn), (B32)

respectively. For the relevant point groups stabilizing TPs in
the presence of PT symmetry, Table IX lists the representa-
tion matrices for all 1D and 2D ICRs.

In Appendix B 2 we have derived a necessary condition for
the enclosing spherical surface (on which the Wilson=loop
operators are computed) to be gapped. Substituting Eq. (B32)
into Eq. (B19), we find that the condition

arg det
[
ρ2D(Cn)ρ1D

a (Cn)† ⊕ ρ1D
b (Cn)†

] = 0 (B33)
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TABLE IX. Irreducible corepresentations (ICRs) of the Cn rota-
tional symmetry in the point groups Cn(v) with space-time inversion
symmetry PT for n ∈ {3, 4, 6}. The notation for the ICRs follows
Ref. [65], where we drop the subscripts if they do not affect the
result. Note that for the 2D ICRs of the point group C6(v) we de-
fine 2E2

1E2 �→ E1 and 2E1
1E1 �→ E2. The 2D ICRs are all SO(2)

matrices and are therefore given in the form e− 2π i
n rsy for r ∈ Z and

the Pauli matrix sy.

ICR A B E1 E2C6(v)
ρ(C6) 1 −1 e− 2π i

6 sy e− 2π i
6 2sy

ICR A B E
C4(v)

ρ(C4) 1 −1 e− 2π i
4 sy

ICR A E
C3(v)

ρ(C3) 1 e− 2π i
3 sy

is equivalent to

det ρ2D(Cn) = ρ1D
a (Cn)ρ1D

b (Cn). (B34)

According to Table IX, all 2D ICRs have determinant 1, such
that Eq. (B34) is violated by all combinations of ICRs that
involve two 1D ICRs with different rotation eigenvalue. For
C4 symmetries this excludes (E ; A, B) and for C6 (Ei; A, B)
with i = 1, 2. (Note that we have dropped subscripts at A and
B where they do not make a difference; this convention is also
adopted in Tables II, IX, and X.)

Finally, we apply Eq. (B30) to all admissible combinations
of ICRs from Table IX, i.e., where the 1D ICRs have equal
rotation eigenvalues. In all those cases both ρ2D(Cn) and
ρ1D

a (Cn) ⊕ ρ1D
b (Cn) are indeed SO(2) matrices. The results

are shown in Table X. Note that (i) only the absolute value
of the Euler class is well defined since the sign is gauge de-
pendent, and (ii) the symmetry-indicator formula determines
the Euler monopole charge modulo n, where n is the order
of the rotational symmetry. Due to these these ambiguities,

{0, 1, . . . , 
 n
2�} is the largest set of unique values of the Euler

monopole charge that can be distinguished based on the ICRs
of the two valence bands. More precisely, all values of χ such
that χ = mn ± p (with n the order of the rotational symme-
try, p an element of the just specified set, and m ∈ Z) are
not distinguishable from χ = p. With the convention that a
mod n ∈ (−
n/2�, . . . , 
n/2�], we write |χ mod n| to indi-
cate the representative of the corresponding equivalence class
of all such indistinguishable values of χ .

In particular, for n = 6, values |χ | = 4 and |χ | = 5 are in-
distinguishable from |χ | = 2 and |χ | = 1, respectively; while
for n = 4, the value |χ | = 3 is indistinguishable from |χ | = 1.
For these two cases the parity of χ is well defined, such that
the 2SW monopole charge, given by w2 = χ mod 2 ∈ Z2,
is uniquely determined. In contrast, for n = 3, the symmetry-
indicator formula for χ can only distinguish values |χ | = 0
and |χ | = 1, with |χ | = 2 being indistinguishable from |χ | =
1. This implies that the parity is not fixed by the symme-
try indicators and therefore the 2SW monopole charge in
C3-symmetric models is not determined from the symmetry
eigenvalues.

TABLE X. Euler class and second Stiefel-Whitney class com-
puted on a surface enclosing a triple-point pair for all possible
combinations of irreducible corepresentations (ICRs) in systems with
space-time inversion symmetry PT squaring to the identity and as-
suming that on that surface the two-band subspace of occupied bands
is separated from the remaining bands by energy gaps. Combinations
of ICRs leading necessarily to a gapless bulk below or above the
TPP are excluded. The first column gives the order n of rotational
symmetry protecting the triple points. In the second column we list
possible combinations of one 2D and two 1D ICRs, where the nota-
tion follows Ref. [65]. Note that we drop the subscript of the ICRs
if the choice of the subscript does not affect the result. Furthermore,
for the 2D ICRs of the point group C6(v) we define 2E2

1E2 �→ E1 and
2E1

1E1 �→ E2. For convenience we repeat the results on triple-point
type for the given combinations of ICRs in the third column. Finally,
we give Euler class χ and the second Stiefel-Whitney class w2 in the
last two columns.

n ICRs Type |χ mod n|a w2

(E1; A, A) (A, A) 1 1
(E1; B, B) (B, B) 2 06 (E2; A, A) (B, B) 2 0
(E2; B, B) (A, A) 1 1

(E ; A, A) (A, A) 1 14 (E ; B, B) (A, A) 1 1
3 (E ; A, A) (B, B) 1 or 2b 1 or 0b

aHere we use the convention that a mod n ∈ (−
n/2�, . . . , 
n/2�],
such that |a mod n| ∈ {0, 1, . . . , 
n/2�}, see text.
bExplicitly, we find χ = −1, which cannot be distinguished from 2.
However, because χ is only well defined up to a sign, the Euler class
could also take the value 1. This implies that the parity of the Euler
class is not uniquely determined by the symmetry indicator and thus
the second Stiefel-Whitney class is not constrained by C3 symmetry.

5. Gaplessness in absence of PT symmetry

Here, we discuss the implications of Eq. (B19) (the deriva-
tion of which only assumes the Cn rotational symmetry) in the
absence of PT symmetry. By adjusting a few steps leading to
Eq. (B20), one should recognize that the Berry phase on any
closed loop of the form �(n, φ) = γ (φ + 2π/n)−1 ◦ γ (φ)
(and assuming the trajectory does not encounter nodes in the
principal gap) is given by

ϕn = arg det[D0(Cn)D1(Cn)†], (B35)

independent of φ. In the presence of PT , we have argued that
the Berry phase on any closed path [including the phase ϕn on
�(n, φ)] is quantized to 0 vs π , and that ϕn = π implies an
odd number of nodal lines to pass through the loop. If PT is
absent but vertical mirror symmetries (mv) are present, then an
analogous quantization of Berry phase can be established for
loops that are symmetric under mirror reflection [115–117],
and nodal lines can only be stabilized inside mirror planes. In
this case, a π Berry phase implies that the mirror-symmetric
loop encloses an odd number of nodal lines inside the mirror-
invariant plane. (The cases with neither PT nor mv are dealt
with trivially towards the end of this section.)

In the relevant magnetic point groups with rotational sym-
metry Cn, with vertical mirror symmetry, but without PT
symmetry (cf. Table I), we can therefore choose φ such that
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FIG. 22. Illustration of the closed loops considered in Ap-
pendix B 5 for the particular case n = 4. (a) The contour �ε (n, φ)
(green) consists of two rotation-related semicircular arcs inside
rotation-related mirror planes (here mx and my). If mirror-protected
nodal lines occur along the contour, we avoid them with infinitesimal
half-circles perpendicular to the mirror plane containing the avoided
nodal lines. The infinitesimal circular contour η(1)

ε (φ) enclosing the
nodal line is illustrated as a dark orange ring; it is symmetric under
my. (b) Composition of �ε (n, φ) with η(1)

ε (φ) results in the new
contour �′

ε (n, φ), which is symmetric under the diagonal mirror
symmetry mx̄y.

γ (φ) lies within one of the mirror planes m1, γ (φ + 2π/n) in
its copy m′

1 related by Cn symmetry, and the two parts of the
contour are mapped onto each other by the mirror symmetry
with mirror plane m2 lying between m1 and m′

1. However, we
need to be more careful because φ is now fixed to a mirror
plane and therefore γ (φ) might contain band nodes in the
principal gap.

If γ (φ) does not contain any band nodes, then ϕn = π

implies that m2 contains an odd number of nodal lines as illus-
trated in Fig. 8(b) for �(4, 0) = �(2π/4). On the other hand,
if γ (φ) does contain M1 band nodes, we exclude them by
modifying γ to γε such that the band nodes are circumvented
(but enclosed by the loop) with infinitesimal half-circles [see
Fig. 22(a)]. Now �ε (n, φ) = γε (φ + 2π/n)−1 ◦ γε (φ) is not
mirror symmetric anymore, but it is still composed of two
segments related by rotational symmetry; therefore, the Berry
phase on �ε (n, φ) is still ϕn. We next compose �ε (n, φ) with
an infinitesimal circular contour η(i)

ε (φ) around each excluded
band node on γε (φ) such that the resulting loop �′

ε (n, φ) does
not include the band nodes anymore. Observe that this new
path is mirror symmetric with respect to m2, and its Berry
phase is therefore quantized to {0, π} [cf. Fig. 22(b)]. Addi-
tionally, the Berry phase on η(i)

ε (φ) is quantized as well and
is indeed π because it is itself mirror symmetric (albeit with
respect to m1 rather than m2) and by assumption it encloses
exactly one band node. Thus, the Berry phase on �′

ε (n, φ)
satisfies

ϕ′
n = ϕn + M1π mod 2π (B36)

and it determines the parity of the number M2 of nodal lines
in the mirror plane m2, i.e.,

ϕ′
n = (M2 mod 2)π. (B37)

By combining the previous two equations, we obtain

ϕn = (M1 + M2 mod 2)π, (B38)

meaning that ϕn ∈ {0, π} determines the parity of the number
of nodal lines in mirror planes m1 and m2 together, i.e., exactly
the ones passing through a 2π

n sector of the enclosing sphere,
just as in the presence of PT .

Let us finally remark that for TPs stabilized by CnPT
with n = 4, 6, we only need to consider the case with mirror
symmetry because if no mirror symmetry is present, then
nodal lines cannot be stabilized away from the rotation axis
(see also the discussion in Sec. IV D). Therefore, there are
no stable band nodes bound to the enclosing sphere. But,
the case of CnPT and mirror symmetry reduces to the case
Cn′ with n′ = n/2 ∈ {2, 3} and mirror symmetry that we have
discussed in the previous two paragraphs.

In conclusion, we have shown that even in the absence of
PT symmetry,

det ρ2D(Cn) �= ρ1D
a (Cn)ρ1D

b (Cn) (B39)

implies that the bulk in the orange or blue kz ranges is
necessarily gapless. It remains to check this condition for
all possible combinations of ICRs. To that end, recall from
Sec. IV D that in the presence of vertical mirror symmetry,
addition of PT does not change the ICRs and Table IX still
applies, giving the same result as in the presence of PT . The
only remaining cases are the magnetic point groups 4̄′2′m and
6̄′m2′. For the former we find det ρ2D(C2) = 1, ρ1D

a,b(C2) = 1
and for the latter det ρ2D(C3) = 1, ρ1D

a,b(C3) = 1, such that in
both cases none of the combinations of ICRs are necessarily
gapless.

APPENDIX C: TIGHT-BINDING MODELS

1. Construction of minimal tight-binding models

To construct the three tight-binding models discussed in
Sec. V, we proceed as follows. We first choose a point group
(D4h and D6h for our models) containing the little cogroup Gk

which we want to protect the triple points (TPs) as a subgroup.
The choice of orbitals determines the irreducible representa-
tions of the point group. Using the 3D GENPOS application on
the Bilbao crystallographic server (BCS), we determine a set
of possible generators of that point group, and then find their
matrix representations using the REPRESENTATIONS PG appli-
cation [106]. To find the ICRs corresponding to the irreducible
representations of the chosen orbitals after inclusion of PT
symmetry with (PT )2 = +1, we follow Ref. [65]. Given the
set of generators, their ICRs and a generating set of hopping
vectors, we use the Python package QSYMM [118] to construct
a family of symmetry-allowed Bloch Hamiltonians.

Finally, we tune the parameters in that family of Hamilto-
nians such that we obtain a four-band triple-point pair (TPP),
accompanied by the minimal number of additional nodal lines
(NLs). This is achieved by first introducing a double-band
inversion at � by setting selected intraorbital hopping parame-
ters to be nonvanishing, and then by adding interorbital terms
until we gap out all band nodes that are not required by the
symmetry or topology. Note that the type of the TPs can be
predicted using our previously developed classification [60].
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Using topological quantum chemistry (TQC) and the BAN-
DREP application on BCS [38,106,119], we deduce the ICRs
at the high-symmetry points, and using the COMPATIBILITY

RELATIONS [106] infer the ones along the relevant rotation
axis.

2. Details of the discussed tight-binding models

Here, we provide details of the models studied in Sec. V.
For each model we present the Hamiltonian, the basis in which
the Hamiltonian is expressed, the numerical values of parame-
ters considered in the main text, and the matrix representations
that we used to construct the models (cf. Appendix C 1).

a. C6-symmetric model with two type-A triple points

The model discussed in Sec. V B has SG P6/mmm (No.
191) and is defined on a hexagonal lattice with lattice con-
stants a = c = 1. As described in the main text, we place
(dxy, dx2−y2 ) and fx(x2−3y2 ), fy(3x2−y2 ) orbitals at Wyckoff po-
sition (WP) 1a (site-symmetry group D6h). We adopt the
basis (dxy, dx2−y2 , i fx(x2−3y2 ), i fy(3x2−y2 ) ), such that PT is rep-
resented simply by complex conjugation. According to TQC
such a placement of orbitals results in the irreducible repre-
sentations (E2g; B1u, B2u) of D6h with unchanged ICRs after
adding PT . In the above basis, the generators of D6h have
matrix representations

C6z = diag(R(−2π/3),−1τ ), (C1a)

mv = σz ⊗ τz, (C1b)

P = σz ⊗ 1τ , (C1c)

PT = K, (C1d)

where mv : y → −y and R(θ ) is the 2D rotation matrix

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
. (C2)

The Pauli matrices σi act on the d vs f (i.e., angular momen-
tum) degree of freedom, while τi act on the two-level degrees
of freedom with a fixed angular momentum.

Including only the nearest neighbor in plane as well as the
nearest vertical hopping terms, the model’s Bloch Hamilto-
nian can be written as

H (6)
AA (k) = −

[
t1 + 2t2

(
cos kx + 2 cos

kx

2
cos

√
3ky

2

)
√

3

2
+ t3 cos kz

]
γ3 − t4(γ14 − γ25)

− t5

[(
cos kx − cos

kx

2
cos

√
3ky

2

)
(γ14 + γ25)

−
√

3 sin
kx

2
sin

√
3ky

2
(γ15 − γ24)

]

− 2t6

[
sin

kx

2

(
2 cos

kx

2
+ cos

√
3ky

2

)
γ1

−
√

3 cos
kx

2
sin

√
3ky

2
γ2

]
, (C3)

with the gamma matrices defined in Sec. II. We tune the
parameters to t1 = 3, t2 = − 1

2 , t3 = −2, t4 = 1
4 , t5 = 1

6 , and
t6 = − 1

3 to obtain a double-band inversion at � and no other
band inversions. The resulting band structure is shown in
Fig. 14(a).

b. C6-symmetric model with two type-B triple points

The second C6-symmetric model, discussed in Sec. V C,
has the same space group (SG) P6/mmm (No. 191) and is also
defined on a hexagonal lattice with lattice constants a = c =
1. However, the d orbitals are replaced by p orbitals, such that
we place (px, py) and fx(x2−3y2 ), fy(3x2−y2 ) at WP 1a. We adopt
the basis (ipx, ipy, i fx(x2−3y2 ), i fy(3x2−y2 ) ). According to TQC,
this results in the irreducible representations (E1u; B1u, B2u)
of D6h, again with unchanged ICRs after adding PT . In the
above basis, the generators of D6h have matrix representations

C6z = diag(R(2π/6),−1τ ), (C4a)

mv = diag(τx,−τz ), (C4b)

P = −1σ ⊗ 1τ , (C4c)

PT = K, (C4d)

where Pauli matrices σi act on the p vs f (i.e., angular momen-
tum) degree of freedom, while τi act on the two-level degrees
of freedom with a fixed angular momentum.

The model’s Bloch Hamiltonian with only the nearest
neighbor in plane and the nearest vertical hopping terms is

H (6)
BB (k) = −

[
t1 + 2t2

(
cos kx + 2 cos

kx

2
cos

√
3ky

2

)
√

3

2
+ t3 cos kz

]
γ3 − t4(γ14 − γ25)

− t5

[(
cos kx − cos

kx

2
cos

√
3ky

2

)
(γ15 − γ24)

+
√

3 sin
kx

2
sin

√
3ky

2
(γ14 + γ25)

]

−
√

2t6

[(
cos kx − cos

kx

2
cos

√
3ky

2

)
(γ1 − γ2)

−
√

3 sin
kx

2
sin

√
3ky

2
(γ1 + γ2)

]
, (C5)

with the gamma matrices defined in Sec. II. We set the model
parameters to t1 = 4, t2 = − 2

3 , t3 = −3, t4 = − 1
2 , t5 = − 1

3 ,
and t6 = 6

5 , which results in the band structure plotted in
Fig. 15(a).

c. C3-symmetric models

The C3-symmetric models of Sec. V D are obtained by
starting from either Eq. (C3) or Eq. (C5) and adding the
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following perturbations to the Hamiltonian:

	H (3)
AA (k) = δC3

(
1 0

0 0

)
⊗
[(−173 sin kx 0

0 2 sin kx
2

(
58 cos kx

2 + 115 cos
√

3ky

2

)
)

+ 200 cos kx
2 sin

√
3ky

2 τx

]
sin kz (C6)

and

	H (3)
BB (k) = UBB	H (3)

AA(k)U †
BB, (C7)

where

UBB = 1√
2

(
1 −1

1 1

)
⊗
(

1 0

0 0

)
+ 1 ⊗

(
0 0

0 1

)
, (C8)

respectively, resulting in the Hamiltonians H (3)
AA (k) and

H (3)
BB (k) whose NL structure is shown in Figs. 16(a) and 16(d),

respectively. Note that, in contrast to the C6-symmetric mod-
els, the subscript of the Hamiltonian does not denote the types
of TPs because a C3-symmetric little cogroup only allows for
type-B TPs [60]. Instead, the subscript indicates from which
C6-symmetric model the corresponding C3-symmetric model
is derived.

APPENDIX D: COMPUTATION OF
THE CORNER CHARGES

In this Appendix we provide technical details on some of
the methods used in the extraction of the corner charges from
the charge distribution obtained from exact diagonalization of
the tight-binding models. First, note that if the electronic or
ionic charge distribution leads to finite charge on different
Wyckoff positions in the unit cell, we are left with an ionic
crystal [88]. Therefore, a coarse graining or smoothing via
a moving average is necessary to properly define edge and
surface charge. In Appendix D 1 we present a discrete method
that performs this task. We used this method for the analy-
sis of the models discussed in Secs. V and VI A. However,
while this coarse graining easily removes strong oscillations
of the charge distribution on sub-unit-cell length scales, os-
cillations due to trivial edge-localized states can remain [29]
and obscure the corner charge. Therefore, in Appendix D 2 we
discuss a method that we developed to remove the signal due
to such edge states. The method applies to the case when the
total edge charge per unit cell (of the ribbon, i.e., the collec-
tion of sites periodically repeated in the ribbon geometry) is
vanishing, but the presence of edge-localized states induces
a nontrivial profile of the charge density as a function of the
distance to the boundary, as has been observed for Sc3AlC in
Sec. VI A.

1. Coarse graining of charge distribution

To coarse grain the electric charge distribution defined on
the original lattice, we first need to choose the target lattice.
The choice of target lattice defines the coarse-graining length
scale. To coarse grain over a single unit cell with multiple
sites, it is convenient to consider a single Wyckoff position of
maximal symmetry to define the target lattice. Some examples
are shown in Fig. 23. Note that it is also possible to coarse
grain over larger lengths scales, i.e., multiple unit cells. Such

a situation is depicted in Fig. 23(c) where coarse graining is
performed over seven original hexagonal unit cells. However,
note that due to overlapping of the coarse-graining cells, the
Wigner-Seitz tessellation formed around the coarse-graining
centers (not illustrated) coincides with the original honey-
comb lattice.

The coarse graining is performed by redistributing the
charge from the original to the target lattice. If a site on
the original lattice belongs to m coarse-graining cells, then a
fraction 1

m of the total charge on the original site is distributed
to each of the corresponding target sites. Consequently, charge
on corner sites is generally transferred to a single target site. In
Fig. 23(a), where we illustrate the coarse graining as applied
to Sc3AlC, redistribution weights of magnitude 1, 1

2 , and 1
4 are

illustrated with solid, dashed, and dotted arrows, respectively.
We have applied the coarse-graining method to achieve a

charge redistribution in all the discussed models. In partic-
ular, Fig. 13 shows a comparison of the charge distribution
before [Figs. 13(a) and 13(b)] and after [Figs. 13(c) and
13(d)] coarse graining for the C4-symmetric model of Sec. II.
The definitions of the original and target lattice as well as
the coarse-graining unit cell are shown in Fig. 23(b). Fig-
ures 23(a) and 23(c) give the same information for the model

FIG. 23. Discrete coarse-graining method. (a) The charge on the
original lattice (defined by the unit cells shaded in blue and sublattice
sites shown as green disks) is redistributed to the target lattice (de-
fined by the red diamond sites). Here the lattice corresponding to the
projection of Sc3AlC (see Sec. VI A) is shown. Each site in the target
lattice is assigned a coarse-graining cell (unit cell of that lattice;
shaded in orange). The charge on each green site is then redistributed
(black arrows) with equal weights (weight 1 shown by solid, 1

2 by
dashed, and 1

4 by dotted lines) to all those red sites whose coarse-
graining cell is adjacent to the green site. Only a few arrows are
shown to maintain clarity of the illustration. (b), (c) Definitions of the
original (green) and target (red) lattice and the coarse-graining cell
(orange) for the C4- and C6-symmetric models discussed in Sec. V,
respectively. Note that in (c) the coarse-graining cells overlap; as a
consequence, the original and the target lattice coincide except for a
missing layer on the boundary.
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FIG. 24. Procedure to remove the edge signal from the charge
distribution of a C4-symmetric system. It is assumed that the total
edge charge per unit cell (of the ribbon geometry) vanishes. The solid
lines in both panels represent the boundary of the lattice. (a) Ribbon
geometry extended in the horizontal direction with 2N − 1 = 7 unit
cells in the vertical direction (corresponding to N = 4 inequivalent
layers). Unit cells of the lattice are indicated by dots, colored accord-
ing to their distance to the boundary. We denote by qi the charge per
unit cell on the ith layer (which is constant within the layer). (b) Flake
geometry for the same system. Here, shells of unit-cell sites (dots)
correspond to the layers from the ribbon geometry (indicated by the
corresponding color). The charge on the whole flake is redistributed
according to the arrows indicated in the bottom-left part of the sys-
tem. The amount of charge that is transferred from a site that belongs
to the jth shell to the next one is given by

∑ j
i=1 qj , where qi are the

charges determined in the ribbon geometry [cf. (a)]. Note that the
charge redistribution flows perpendicular to the boundary; therefore,
no charge is transferred between the corners.

of Sc3AlC (cf. Sec. VI A) and the C6-symmetric models (cf.
Secs. V B and V C), respectively.

2. Removal of edge signal from charge distribution

Even after coarse graining (as described above), charge
oscillations caused by trivial edge-localized states can remain.
Note that in contrast to the oscillations on sub-unit-cell scale,
these remaining oscillations are generally perpendicular to
the edges, and vanish in the bulk. Since the total corner and
edge charges are defined via integration over regions with
boundaries perpendicular to the edges of the sample [29],
the remaining oscillations do not prevent us from computing
these total charges [see Fig. 18(c) for such a calculation on
the original coarse-grained data]. However, such oscillations
can visually obscure the localization properties of the charge.
Here, we discuss a method to subtract such edge-localized
oscillations for the cases where the total edge charge per unit
cell (of the ribbon geometry) vanishes. The method applies to
Cn-symmetric systems with n � 3, where the bulk as well as
the finite-size sample satisfy the symmetry requirement. For
concreteness we choose n = 4 for the following discussion.
In particular, the described setup directly applies to the case
of Sc3AlC as presented in Sec. VI A.

Two separate calculations need to be performed: one on a
ribbon with 2N − 1 layers (of unit cells) [cf. Fig. 24(a)] and
one on a flake with N shells (of unit cells) [cf. Fig. 24(b)],
such that there is a direct correspondence between the layers
and the shells. Due to the rotational symmetry, the four sides
of each shell are equivalent and only a single orientation of
the ribbon needs to be computationally modeled. Note that
compatible fillings (in particular, the same choice of chemical
potential) need to be considered for the two systems. The

FIG. 25. Definition of nodal-line (NL) orientations via the non-
Abelian invariant, illustrated on the example of multiband nodal link
[60] of a three-band model; red (blue) line indicates a NL formed by
the lower (upper) two bands. The non-Abelian invariant is computed
on paths γ (light green) and γ̃ (dark green), where P′ is shifted
relative to P by a reciprocal lattice vector. In the three-band example
shown here, q(γ ) = g2 (corresponding to a nodal line in the second
gap, shown in blue) and bands 2 and 3 have different Berry phases
φ2 �= φ3. Therefore, the orientation of the upper blue nodal ring is
opposite to the one of the lower ring, q(γ ) = −g2.

charge distributions obtained for both geometries first need to
be coarse grained to the level of unit cells (cf. Sec. VI A), such
that the coarse-grained lattice has a single site per unit cell.
The resulting lattices are depicted in Figs. 24(a) and 24(b).

From the calculation on the ribbon, the total charge qi per
unit cell in the ith layer can easily be extracted. On the flake,
we then redistribute the charge as indicated in Fig. 24 with
arrows: from a site in the jth shell (but not on one of the diag-
onals) the charge

∑ j
i=1 qi is transferred to the ( j + 1)th shell.

There is no charge transfer away from sites that lie on one
of the diagonals. Therefore, this procedure seemingly leads
to a charge accumulation on the diagonals and in the center.
However, recall that, by assumption, the total edge charge

TABLE XI. Compounds with space-time inversion symmetry
that host type-A triple points (TPs) on the given high-symmetry line
(HSL) and are therefore candidates for having a nontrivial Euler
monopole charge. Some compounds host multiple TPs. For each
material and TP the space group, the HSL on which the TP lies, the
nodal-line (NL) segment carrying the Euler monopole charge, i.e.,
the segment enclosed by the ellipsoid, the relevant Berry phases, and
the Euler monopole charge induced from Wilson-loop spectra are
shown.

Material SG HSL NL segment φB χ

Na2LiN 129 � − Z − � [-0.29, 0.29] (0, π ) 2
[ 0.29, 0.71] (π, 0) 2

Li2NaN [91] 191 � − A − � [-0.08, 0.08] (0,0) 0
[ 0.08, 0.92] (0, π ) 2

TiB2 [56] 191 � − A − � [-0.26, 0.26] (0, π ) 2
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FIG. 26. Computation of Euler monopole charges of a pair of single triple points in Na2LiN with the surface centered at �. (a) Shows the
Brillouin zone, the high-symmetry points, and the planes in which the nodal lines are shown in (b). (b) Size of the four relevant gaps (orange,
red, blue, and purple, according to increasing energy; at the triple point both the red and blue gaps are closed) in the two mirror planes shown
in (a) encoded by the intensity of the color (and with a cutoff at a gap of 0.02 eV). The triple point (yellow) and the central nodal line are
emphasized by appropriately colored overlays. (c) Wilson-loop spectrum computed for the relevant bands on the ellipsoid indicated in (b). We
observe that the Wilson-loop spectrum winds twice, which implies |χ | = 2.

vanishes, such that in the limit of large N ,
∑N

i=1 qi = 0. Con-
sequently, the accumulated charge compensates oscillations
on the diagonals and converges to zero at the center of the
flake. Furthermore, note that the charge redistribution flows
strictly perpendicular to the flake boundaries; therefore, no
charge is transferred between the corners of the flake, keeping
its value invariant (up to corrections that are exponentially
small in the system size).

The effect of the method can be seen in Fig. 18, where the
original (coarse-grained) distribution is shown in Figs. 18(d)
and 18(e), and the charge distribution after removing the edge
signal is displayed in Figs. 18(f) and 18(g). We remark that the
data in Figs. 18(f) and 18(g) have undergone one additional
coarse-graining step after the removal of the edge charge.
Compared to Fig. 18(d), the localization of the corner charge
in Fig. 18(f) is visually much more manifest.

APPENDIX E: GENERALIZED QUATERNION CHARGE
IN DIFFERENT BRILLOUIN ZONES

In this Appendix we formalize the relationship between the
orientation of nodal lines (NLs) and their copies in neighbor-
ing Brillouin zones (BZs). The orientation of a NL as used
in Sec. III B can be formally defined using the non-Abelian

invariant introduced by Ref. [66] (also called generalized
quaternion charge therein). While the topological classifica-
tion of band nodes is given by equivalence classes of the
generalized quaternion group (each equivalence class contains
either a single element or two elements that differ by a sign),
the sign of the invariant becomes well defined if the contours
have a common base point P. In that case the sign of the gener-
alized quaternion invariant computed on a contour enclosing a
single NL defines [71] the orientation of that NL (cf. Fig. 25).

The prior works [66,71] on the non-Abelian band topol-
ogy have only considered closed contours which are fully
contained within a single BZ. However, to understand the
reversal of NL orientation between neighboring copies of BZ
(cf. Fig. 6), one must explicitly consider paths that cross the
BZ boundary. Such paths entail additional complications, as
is well known from the case of the Zak-Berry phase [79,120];
namely, in general H (k) and H (k + b), where b is any re-
ciprocal lattice vector, are not identical, but are related by a
diagonal unitary rotation. In the Supplemental Material [72]
we explain how to compute the non-Abelian invariant in that
case and then prove a very general statement relating the
values of the invariant computed on contours shifted by a
reciprocal lattice vector but connected to a common base point
(see, e.g., the light and dark green paths γ and γ̃ in Fig. 25).

FIG. 27. Computation of Euler monopole charges of a pair of single triple points in Na2LiN with the surface centered at Z . The organization
of the panels is in one-to-one correspondence with Fig. 26 (the same cutoff of 0.02 eV is used). In (c) we observe that the Wilson-loop spectrum
winds twice, which implies |χ | = 2.
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FIG. 28. Computation of Euler monopole charges of a pair of single triple points in Li2NaN with the surface centered at �. The organization
of the panels is in one-to-one correspondence with Fig. 26 (cutoff 0.02 eV). In (c) we observe that the Wilson-loop spectrum winds twice, which
implies χ = 0.

As a corollary of that general statement, we find that the
following holds:

Corollary 1. Assume an N-band system with PT sym-
metry squaring to +1 described in the orbital basis by a
Hermitian Bloch Hamiltonian H (k). Let γ : t ∈ [0, 1] �→
γ (t ) be a closed contour with no band degeneracies located
inside the (first) BZ. The path starts at the base point P =
γ (0) = γ (1) and we decompose

q(γ ) = s
∏
j∈J

g j (E1)

with s ∈ {±1}, g j the generators defined in Refs. [60,66],
and J ⊆ {1, 2, . . . , N − 1} a subset of the energy gaps of the
N-band Hamiltonian (factors with smaller subscript j appear-
ing to the right). Then, the generalized quaternion charge on
the corresponding contour γ̃ with the same base point and
enclosing the same band inversions but in the BZ shifted by
the reciprocal lattice vector b (cf. Fig. 25) is

q(γ̃ ) = (−1)mq(γ ), (E2)

where m is the number of elements of the set

{ j ∈ J|φ j �= φ j+1 } (E3)

with φ j ∈ {0, π} the Berry phase of the jth band in the di-
rection b. [Note that in the conditioning in Eq. (E3) the label
j + 1 may not be in the set J .]

We briefly discuss the application of Corollary 1 to the
situation discussed in Sec. III B and depicted in Fig. 6. We are
interested in the change of the orientation of the blue nodal
ring when comparing two copies displaced by the primitive
reciprocal lattice vector in kz direction. Recall that the ori-
entation of nodal lines (NLs) is defined via the generalized
quaternion invariant of unique paths encircling those NLs with
a fixed base point. This is exactly the situation of Corollary 1
with q(γ ) = sg2 (in the figure the case s = +1 is illustrated).
Then, the corollary implies that the orientation changes if and
only if the Berry phases of bands 2 and 3 are different, i.e.,
if φ2 + φ3 = π mod 2π , in agreement with the statements
in the main text. We also remark that if q(γ ) = ±1 (i.e., if
the Berry phase of each band on γ is trivial and no NLs are
enclosed by γ ), we have J = ∅ and Corollary 1 therefore
immediately implies that q(γ ) = q(γ̃ ).

APPENDIX F: ADDITIONAL MATERIAL EXAMPLES
WITH EULER MONOPOLE CHARGE

From the list of triple-point (TP) materials in Ref. [59],
we select additional candidates (aside from Li2NaN) that po-
tentially host TP-induced Euler monopole charges, namely,
Na2LiN, Li2NaN, and TiB2. Based on the first-principles
calculations performed in Ref. [59] (and whose results are

FIG. 29. Computation of Euler monopole charges of a pair of single triple points in Li2NaN with the surface centered at A. The organization
of the panels is in one-to-one correspondence with Fig. 26 (cutoff 0.02 eV). In (c) we observe that the Wilson-loop spectrum winds twice, which
implies |χ | = 2.
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FIG. 30. Computation of Euler monopole charges of a pair of single triple points in TiB2 with the surface centered at �. The organization
of the panels is in one-to-one correspondence with Fig. 26 (cutoff 0.05 eV). In (c) we observe that the Wilson-loop spectrum winds twice,
which implies |χ | = 2.

given in the corresponding supplemental data and code [121]),
we construct maximally localized Wannier functions using
WANNIER90 [97] with s orbitals of alkali-metal elements, d
orbitals of transition metal elements, and p orbitals of non-
metal elements (for Li2NaN no orbitals of Li are included).
For the resulting Wannier tight-binding models we use the
Python package Z2PACK [100,101] to compute the Wilson-
loop spectra on ellipsoids enclosing the appropriate NL
segments as well as the relevant Berry phases (cf. Fig. 6).

The results are summarized in Table XI and in Figs. 26–30
we show for each TP material and NL segment the resulting
Wilson-loop spectrum from the value χ of the Euler monopole
charge is deduced. By comparing the Berry phases and the
values of the Euler monopole charge, we verify the condition
for nontrivial Euler monopole charge discussed in Sec. III B.
We provide access to the Wannier tight-binding models as
well as the Wilson-loop spectra in the supplementary data and
code [114].
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