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Triple nodal points characterized by their nodal-line structure in all magnetic space groups
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We analyze triply degenerate nodal points [or triple points (TPs) for short] in energy bands of crystalline solids.
Specifically, we focus on spinless band structures, i.e., when spin-orbit coupling is negligible, and consider TPs
formed along high-symmetry lines in the momentum space by a crossing of three bands transforming according
to a one-dimensional (1D) and a two-dimensional (2D) irreducible corepresentation (ICR) of the little cogroup.
The result is a complete classification of such TPs in all magnetic space groups, including the nonsymmorphic
ones, according to several characteristics of the nodal-line structure at and near the TP. We show that the
classification of the presently studied TPs is exhausted by 13 magnetic point groups (MPGs) that can arise
as the little cogroup of a high-symmetry line and which support both 1D and 2D spinless ICRs. For 10 of the
identified MPGs, the TP characteristics are uniquely determined without further information; in contrast, for
the 3 MPGs containing sixfold rotational symmetry, two types of TPs are possible, depending on the choice of
the crossing ICRs. The classification result for each of the 13 MPGs is illustrated with first-principles calculations
of a concrete material candidate.
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I. INTRODUCTION

The discovery of Weyl and Dirac semimetals [1–9] has
ignited fruitful research into novel types of quasiparticle dis-
persions in semimetals. These emerge when energy bands
become degenerate in the vicinity of the Fermi energy, giving
rise to so-called band nodes, and they can feature nontriv-
ial topological invariants, boundary signatures, and transport
properties. Since the originally proposed Weyl and Dirac
point degeneracies, various other types of band nodes have
been proposed and studied: from nodal lines (NLs) [10–14]
forming intricate linked, knotted, and intersecting structures
[15–19], over nodal surfaces [20–24], to nodal points with
degeneracies different from two (Weyl) and four (Dirac)
[25–28]. In particular, threefold-degenerate points [29–40]
[also called triply degenerate nodal points, triple nodal points,
or (for brevity) just triple points (TPs)] have been widely
investigated, as they constitute a special intermediate between
Weyl and Dirac semimetals.

Triple points appear in two flavors: (1) as three-
dimensional (3D) irreducible corepresentations (ICRs) of the
little group of high-symmetry points (HSPs) in the Brillouin
zone (BZ) [25,41–43], where the crystalline symmetry forces
a triplet of bands to be energetically degenerate, and (2)
as the crossing of a symmetry-protected two-dimensional
(2D) ICR of the little group of a high-symmetry line (HSL)
by a one-dimensional (1D) ICR. Initially, TPs were consid-
ered within the context of spin-orbit-coupled (SOC) systems,
where flavor-(2) TPs were classified into type A vs type B
according to the absence or presence of attached nodal-line
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(NL) arcs [29,39]. Using photoemission spectroscopy, TPs
were shown to exist in the band structure of various materials,
including MoP [33], WC [37], and ferroelectric GeTe [44].

In contrast, TPs in spinless band structures, which de-
scribe bosonic systems as well as electronic systems without
magnetic order and negligible SOC, became the subject of
a systematic analysis only recently [41–43,45,46] and have
been reported in several compounds [36,47–51]. While it is
difficult to find magnetic materials that are well described
by spinless representations, classical metamaterials are nat-
urally spinless and setups where time-reversal symmetry is
broken are therefore expected to be described by spinless
representations of magnetic groups. Very recent works have
systematically searched for TPs in spinless band structures
of all magnetic space groups [41–43,52–54], studied TPs at
HSPs in more detail [41–43], or classified TPs on HSLs
according to their dispersion as linear or quadratic [42]. How-
ever, a systematic classification of the NL structure appended
to TPs on HSLs (i.e., whether they are type A vs type B [29])
in spinless band structures, as well as a discussion of their
topology, is missing.

In this work, we complete the missing aspects of the TP
classification by considering the case of TPs lying on HSLs
in spinless band structures. In Ref. [45] we have classified
all possible TPs in a subset of spinless systems, namely,
those in systems with space-time inversion (PT ) symmetry
and symmorphic space group, according to a similar scheme
as Ref. [29], and we revealed valuable connections of such
TPs to non-Abelian band topology, monopole charges, and
NL links [45,55–57]. Here, we describe the full derivation of
the classification result shown in Ref. [45] and extend it to
include TPs in spinless systems without PT symmetry and
in nonsymmorphic space groups. The result is a complete
classification of TPs in spinless systems for all magnetic
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space groups according to the NL structure appearing in the
vicinity of the TPs. Note that by “magnetic space groups” we
mean all four types of Shubnikov groups, which include the
ordinary space groups (type I) and space groups describing
nonmagnetic materials with time-reversal symmetry (type II).
Let us also point out that this paper appears in parallel with
another work [46], in which we reveal universal higher-order
topological signatures associated with pairs of TPs (i.e, when
a semimetallic band structure is formed by a 2D ICR being
sequentially crossed by two 1D ICRs) classified here, thus
filling the other major gap in the previous characterization of
TPs.

The paper is structured as follows. We start in Sec. II by
setting the terminology necessary for describing the nodal
structure near TPs. Importantly, we report that even type-A
TPs are often associated with a nexus of NLs that lies on the
HSL in the vicinity of the TP, and which can collapse onto
the TP after fine tuning some model parameters. Our main
classification result, summarized by Tables I and II, therefore
includes not only the TP type, but also the codimension for
merging type-A TPs with a nexus of nodal lines. The summary
of results is followed by an outline of the actual derivation of
the TP classification, starting with MPGs withoutPT symme-
try in Sec. III, and followed by the MPGs with PT symmetry
in Sec. IV. In the latter case, we briefly touch upon the non-
Abelian topology [55,57–62] as described in Ref. [45]. We
proceed by demonstrating the classification result by showcas-
ing TPs and their associated NL structures in concrete material
examples in Sec. V. In particular, Table V lists representative
nonmagnetic material examples with time-reversal symmetry
(described by type-II magnetic space groups) hosting TPs on
HSLs for each of the little groups tabulated in Table I. Using
first-principles calculations based on density functional theory
(DFT), we compute the size of the relevant band gaps, identify
the nodal structure, e.g., NLs and TPs, and infer the type of
each TP to verify the predictions based upon our classifica-
tion. Finally, we conclude in Sec. VI.

The paper is supplemented by several Appendixes and
supplementary data and code [63]. Since we discuss not only
the 230 crystallographic space groups but all magnetic space
groups, we have to deal with antiunitary symmetries and their
representation theory. For this reason, Appendix A provides a
short review of the concepts, notation, and properties that we
use. Second, in Appendix B we discuss the effect of possible
nonsymmorphic symmetries of the space group. In particular,
we show that nonsymmorphicity does not alter the charac-
terization of TPs along a HSL with a given little cogroup
whenever 1D ICRs are available along the HSL (information
that is tabulated, e.g., in Ref. [64] or on the Bilbao crystal-
lographic server [65–69,77]). In the subsequent Appendixes
C and D we provide detailed derivations and proofs for the
classification results. Finally, in Appendix E we present the
band structure data supporting the observations summarized
in Table V.

II. TERMINOLOGY AND CLASSIFICATION RESULTS

In this section, we summarize the key terminology adopted
throughout the paper, and summarize the obtained classifica-
tion of TPs in spinless band structures. We begin in Sec. II A

by defining the notion of triple points (TPs) and nexus points.
This allows us to classify TPs according to their type (A vs
B) and certain additional characteristics (codimension for a
nexus point coinciding with a TP for type-A TPs, number
of NL arcs attached to a nexus and linear and quadratic
attachment). In Sec. II B, we discuss which high-symmetry
lines (HSLs) in various space groups can potentially har-
bor TPs (of some type). Here, the key criterion is that the
little group (GHSL) along the HSL should harbor both 1D
and 2D irreducible corepresentations (ICRs). This happens
only if the little cogroup (the quotient of little group by the
translation group GHSL = GHSL/T) is one of the 13 magnetic
point groups (MPGs) listed in Table I. In the last paragraph
of Sec. II B, we briefly discuss how to determine in which
space groups this happens and provide references that have
compiled such tables.

Finally, Sec. II C presents and briefly discusses the result
of our classification, summarized in Table II. Specifically, we
find that the characteristics of the TP are uniquely fixed by the
little cogroup of the HSL, the sole exception being HSLs with
sixfold rotational symmetry where one additionally needs to
specify which 1D and 2D ICRs of the little cogroup are
crossing at the TP. Crucially, this result applies irrespective
of the (non)symmorphicity of the space group: we find that
nonsymmorphicity can only forbid the existence of TPs (if
1D ICRs of the little group do not exist), but cannot alter the
characteristics of the TPs (if 1D ICRs do exist).

A. Basic notions

Before introducing the classification scheme in more de-
tail, we set some terminology. Consider a HSL with little
groupGHSL; the little groupGk of k is defined as the subgroup
of the space group that leaves the momentum k invariant
modulo translations by reciprocal lattice vectors. Note that
Gk always contains as a subgroup the (infinite) group T of
translations by Bravais vectors. The existence of a TP along
the HSL means that a nondegenerate band (1D ICR of GHSL)
crosses a doubly degenerate band (2D ICR of GHSL), such
that the nodal line formed by the latter (which we call the
central NL) changes the energy gap [cf. Fig. 1(a)]. In such a
three-band system, let us denote the two gaps (and the NLs in
the corresponding gaps) by the colors used in the illustrations:
the lower gap is red and the upper gap is blue. Then, the
defining feature of a TP is the change of the central NL from
red to blue [see Fig. 1(c)] [45].

Often, TPs are accompanied by additional NLs that coa-
lesce with the central NL of the same color at some point on
the HSL. We call such a point a red or blue nexus (point),
depending on the gap in which it appears [see Figs. 1(d)
and 1(e), respectively]. In some cases, the little group and
the corepresentations of the bands can force nexus points
to coincide with the TP [cf. Figs. 2(c) and 2(d)], while in
other cases they generically do not coincide with the TP [cf.
Fig. 2(b)] or are completely absent [cf. Fig. 2(a)]. Following
the terminology of Ref. [29] that introduced the classification
of triple points in spinful systems, we call TPs that coincide
with both a red and a blue nexus type B and the others type A.
For brevity, we term the additional NLs involved in the nexus
points NL arcs.
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FIG. 1. Triple points (TPs) and their characteristic nodal fea-
tures. (a) Schematic band structure along a high-symmetry line
(HSL) kz that can stabilize TPs (cf. Table I). Note the non-degenerate
crossing the doubly-degenerate band. Nodal lines (NLs) in the lower
(upper) band gap of a three-band model are shown in red (blue), and
the TP is indicated by a yellow disk or sphere. (b) Band structure
of the material AlN along the � = �A line, which we predict to
host triple points (cf. Table V and Figs. 16 and 17). Non-degenerate
(doubly-degenerate) bands are shown as thin gray (thick black) lines
and TPs are indicated by yellow arrows. (c) In the NL structure, a
TP can be recognized by the change of a NL color from red to blue.
(d), (e) The point where additional NLs (called NL arcs) coalesce
with the central NL (along kz) is called nexus. All NLs involved in
the nexus are in the same gap, i.e., a red (blue) nexus involves NLs
in the lower (upper) gap. The number nnexus

a of NL arcs that coalesce
with the central NL depends on the little co-group of the HSL (cf.
Table II).

Going beyond the terminology of Ref. [29], we further sub-
divide type-B TPs into type-Bl TPs with linearly attached NL
arcs [Fig. 2(c)] and type-Bq TPs with quadratically attached
NL arcs [Fig. 2(d)]. For type-A TPs in symmetry groups that

FIG. 2. Types and subtypes of triple points (TPs) in spinless
systems. Nodal lines (NLs) are shown in red (blue) if they are in
the lower (upper) band gap of the three-band model and the TP is
indicated in yellow. TPs are conventionally classified as type A vs
type B according to the absence vs presence of NL arcs attached to
the TP besides the central NL along the high-symmetry line. Type-A
TPs arise (a) without nexus points or (b) with nexus points that do
generically (i.e., without fine tuning) not coincide with the TP. For
type-B TPs a red and blue nexus generally coincides with the TP. We
differentiate between (c) type Bl with three linearly attached NLs and
(d) type Bq with six quadratically attached NLs.

TABLE I. Symmetry conditions for triple points (TPs) along
high-symmetry lines (HSLs) in momentum space of spinless sys-
tems. The table displays all magnetic point groups (MPGs) in
Hermann-Mauguin notation [64] that can stabilize TPs if they occur
as the little cogroup of a HSL. These are exactly the MPGs that (1)
preserve one momentum component (such that the MPG corresponds
to a little cogroup of some HSL), and that (2) support both 1D and
2D irreducible corepresentations. The columns and the rows indicate
generators of the MPG, where Cn is rotational symmetry of order n,
PT is space-time inversion symmetry, and mv is mirror symmetry
with respect to a plane containing the rotation axis. Entries marked
by ✗ violate condition (2) and can therefore not stabilize TPs.

Generators C3 C4 C4PT C6 C6PT

∅ ✗ ✗ 4̄′ ✗ 6̄′

PT 3̄′ 4/m′ 6/m′

mv 3m 4mm 4̄′2′m 6mm 6̄′m2′

{PT , mv} 3̄′m 4/m′mm 6/m′mm

admit nexus points along the rotation axis, we additionally
define the number nnexus

a of NL arcs attached to a nexus point
and specify the codimension for colliding at least one nexus
point with the TP, i.e., quantify how many parameters need
to be fine tuned to achieve the coincidence of the TP with
the nexus of NL arcs. Sometimes, because of reasons rooted
in symmetry, the smallest number of nexus points that can
collide with the TP is larger than one, i.e., several nexus points
necessarily collide with the TP simultaneously. We remark
that understanding these codimensions is not just an abstract
academic problem, but it may become important for the analy-
sis of real materials’ band structures when the codimension is
small. To illustrate this aspect, we show a particular example
of a material that exhibits such a fine-tuned type-A TP in
Sec. V B.

B. High-symmetry lines that admit TPs

The presence of stable TPs requires the crossing of 1D
and 2D ICRs on the HSL. Thus, a necessary condition is
the existence of both 1D and 2D ICRs in the little group of
the HSL. To analyze which HSLs obey these conditions, it is
necessary to distinguish the case of symmorphic vs nonsym-
morphic space groups.

In symmorphic space groups, the ICRs of any little group
Gk are readily deduced from the ICRs of the corresponding
little cogroupGk, which is defined as the quotient groupGk/T

and equal to one of the 122 MPGs. By screening through
the irreducible representations of MPGs characterizing HSLs
[64–67], we find that this condition is satisfied (1) if a rota-
tional symmetry Cn of order n ∈ {3, 4, 6} with rotation axis
along the HSL is supplemented with PT or a vertical mirror
symmetry mv (i.e., one containing the rotation axis), or both;
alternatively, (2) the combined symmetry CnPT (which we
call antiunitary rotation) of order n ∈ {4, 6} can stabilize TPs
with or without the PT and mv symmetries. We summarize
all these options in Table I. The particular choice of the little
cogroup and of its 1D and 2D ICRs that describe the triplet of
crossing bands constrain the form of the Hamiltonian close to
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the TP, thus determining the type and other characteristics of
the TP.

In nonsymmorphic space groups, on the other hand, the
ICRs of the little group Gk are generically not related to the
ordinary ICRs of the little cogroup Gk, but they are instead
obtained from the projective ICRs of Gk. More precisely,
one needs to identify representations � : Gk → U(n) such
that ∀ gi, g j ∈ Gk : �(gi )�(g j ) = μ(gi, g j )�(gig j ), where
the factor system μ : Gk × Gk → U(1) is fixed by the space-
group symmetry [64]. However, as we show in Appendix B,
if the little group supports a 1D ICR (a necessary condition
to admit TPs), it must hold that the factor system μ con-
straining the admissible projective ICRs of the little cogroup
Gk belongs to a trivial equivalence class, meaning that an
appropriate transformation brings all values of μ to 1, and
that one in fact studies the ordinary representations of Gk.
We thus find, even for nonsymmorphic space groups, that if
the little group GHSL at a HSL supports both 1D and 2D ICRs,
then (1) the corresponding little cogroup GHSL is one of the 13
MPGs listed in Table I, and (2) the symmetry constraints on
the Hamiltonian close to the TP (and therefore its type and the
other characteristics) are fully determined by the correspond-
ing ordinary ICRs of the little cogroup.

In this work, we classify triple points based on their proper-
ties (notably according to their associated NL structure) given
a concrete little group of a HSL, while we leave the systematic
identification of the space groups that host TPs to other works.
Given Table I and databases such as the Bilbao crystallo-
graphic server [65] this is, in principle, a straightforward task.
Let us point out that, in parallel to our work, space groups that
support a variety of band nodes (“quasiparticles”), including
TPs, were tabulated in Refs. [52–54]. In the corresponding
supplementary materials, the authors list for each type-II,
type-III, and type-IV magnetic SG, respectively, at each HSL
the generators of the little cogroup and the admissible nodal
quasiparticles. Searching for TPs in those tables, one can find
all SGs and HSLs supporting TPs as well as the relevant little
cogroup such that our classification can be easily applied.

C. Characterization of TPs for each admissible HSL

Having determined which HSLs of which space groups can
potentially harbor TPs, one can proceed to analyze their type
and the other characteristics. This involves a detailed study of
k · p expansions near the TP for the various choices of (1) the
little cogroup and of (2) a pair of its 1D and 2D ICRs. Such
a technical analysis constitutes the bulk of Secs. III and IV
(further supplemented by Appendixes A, C, and D). The clas-
sification result derived from our analysis is summarized in
Table II. We find that for almost all MPGs, the little co-group
uniquely determines the type and the codimension of the TP.
The only exception are the MPGs that contain C6 symmetry,
where either type-A or type-B TPs can arise, depending on the
ICRs of the bands forming the TP.

Frequently, even type-A TPs are accompanied by one or
more nexus points (in the same or in different gaps) that attach
to the central NL near the TP. We therefore determine the
number nnexus

a of NL arcs attached to the nexus point and
the codimension (i.e., the number of parameters that have to
be fine tuned) to collide at least one of the nexus points with

TABLE II. Classification of triple points (TPs) on high-
symmetry lines in spinless systems as type A vs type Bq vs type Bl

based on the little cogroup of the high-symmetry line. In the last three
columns we list the number nnexus

a of nodal-line (NL) arcs attached to
a nexus point occurring near or at the TP (for 4̄′ and 6̄′ no NL arcs are
possible, which is denoted by the entry “–”), the scaling μ of those
NL arcs at the nexus point [kz ∝ (k2

x + k2
y )μ/2], and the codimension

for colliding at least one nexus point with the TP (for type B this
is naturally 0 and if nexus points cannot be stabilized we write ∞).
For point groups with C6 rotational symmetry, type and codimension
of the TP additionally depend on the irreducible corepresentations
(ICRs) ρ2D ⊕ ρ1D of the bands involved in the formation of the TP.

Little cogroup ICRsa Type nnexus
a μ Codimension

3m, 3̄′, 3̄′m Any Bl 6 1 0

4̄′, 6̄′ Any A – – ∞
4̄′2′m, 4mm Any A 4 2 2
4/m′, 4/m′mm Any A 4 2 1

6̄′m2′ Any A 6 2 1

(E1; A), (E2; B) A 2 2
6mm 12

(E1; B), (E2; A) Bq 2 0

(E1; A), (E2; B) A 2 1
6/m′, 6/m′mm 12

(E1; B), (E2; A) Bq 2 0

aThe notation for the ICRs follows Ref. [64], where we drop the
subscripts of the 1D ICRs if they do not affect the result. Note that
for the 2D ICRs of 6/m′ we define 2E2

1E2 	→ E1 and 2E1
1E1 	→ E2

to get labels consistent with those of 6mm and 6/m′mm.

the TP. The MPGs 4̄′ and 6̄′ are exceptions to this feature
because they do not support NL arcs away from the central
line; this is denoted in Table II by a codimension “∞”. For
type-B TPs, on the other hand, the codimension can be in-
terpreted as being zero. Note that in contrast to nexus points
coinciding with a type-B TP, nexus points near a type-A TP
are not enforced by symmetry and therefore not a parameter-
independent consequence of the TP.

Finally, we observe that the subtype of type-B TPs is de-
termined by the order of rotational symmetry. Writing k2 =
k2

x + k2
y , we find that threefold rotational symmetry results in

three NL arcs attaching linearly to the TP kz ∝ k [cf. Fig. 2(c)]
in each (i.e., both red and blue) energy gap, while sixfold
rotation gives six quadratically attaching NL arcs kz ∝ k2 [cf.
Fig. 2(d)] in each gap. Analogously, we characterize how NL
arcs attach to nexus points in the vicinity of type-A TPs.
We find that they always attach quadratically, kz ∝ k2 [cf.
Fig. 2(b)].

In the next two sections, we present the derivation of these
results by constructing minimal k · p models for each possible
combination of a 2D and a 1D ICR of each of the 13 MPGs
shown in Table I. The type, subtype, and codimension of the
TP, i.e., the absence vs presence of nexus points of NL arcs at
or near the TP, is governed by the absence vs presence of NLs
lying off the rotation axis and connecting to the rotation axis at
some point. These NLs are protected either by vertical mirror
symmetry mv (in which case they are constrained to lie in the
corresponding vertical mirror planes) or by PT symmetry (in
which case they can curve arbitrarily inside momentum space)
[11]. To reflect this dichotomy, we divide the 13 MPGs into
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those without PT symmetry, discussed in Sec. III, and those
with PT symmetry, discussed in Sec. IV.

III. DERIVATION IN THE ABSENCE OF PT symmetry

A. MPGs without mirror symmetry

We begin the derivation of the classification of TPs in
Table II by swiftly considering those MPGs in Table I that
contain neither space-time inversion symmetryPT nor mirror
symmetry mv . This includes MPGs 4̄′ and 6̄′ that are generated
by a single element: C4zPT and C6zPT , respectively.

These symmetries act like rotations inside the k space.
Therefore, the little cogroup of all points lying off the rotation
axis contains only the identity element, in which case the
codimension for node formation is three (i.e., point nodes in
3D) [22]. It follows that NLs can only be stabilized along the
corresponding rotation axis, preventing the existence of any
stable NL arcs [11]. This implies that all TPs on lines with
the little cogroup 4̄′ or 6̄′ are type A and that nexus points
are absent, i.e., the nodal structure is always the one shown in
Fig. 2(a).

B. MPGs with mirror symmetry

We continue with the characterization of TPs in those
MPGs in Table I that contain vertical mirror symmetry mv but
not PT . This includes 3m, 4mm, 4̄′2′m, 6mm, and 6̄′m2′. The
presence of vertical mirror symmetries implies that there can
be stable NLs in the corresponding mirror planes, which may
connect as NL arcs either to type-B TPs or to a nexus point in
the vicinity of a type-A TP.

For each of the listed MPGs we first derive a k · p expan-
sion near the TP within the two-dimensional mirror planes.
More precisely, we perform the expansion only in the distance
from the rotation axis (kx coordinate inside the mirror plane),
whereas we keep the full dependence on the coordinate along
the rotation axis (kz). The derived k · p expansions allow us
to determine the TP type and the number of NL arcs attached
to a nexus point. For the cases where the TPs are identified
as type A, we derive the codimension for colliding the TP
with a nexus point. We also determine the minimal number
of nexus points that can simultaneously collide with the TP,
which requires us to relate the parameters in the k · p model
within symmetry-unrelated sets of mirror planes. The discus-
sion is subdivided into four parts: Secs. III B 1 and III B 2
about MPGs 4mm, 4̄′2′m, and 6mm, Sec. III B 3 about MPG
6̄′m2′, and finally Sec. III B 4 about MPG 3m.

1. TP-type derivation for MPGs 4mm, 4̄′2′m, and 6mm

The MPGs 4mm, 4̄′2′m, and 6mm are all generated by two
elements: a rotational symmetry Cn (or antiunitary rotational
symmetry CnPT ) with n = 4, 6 and a vertical mirror sym-
metry m with mirror plane containing the rotation axis. For
each of these MPGs, the vertical mirror planes come in pairs
that are orthogonal to each other: 4mm has two mirror planes
along the x and y axes (for suitably chosen coordinates) and
two diagonal mirror planes [cf. Fig. 3(a)], 4̄′2′m has only the
two diagonal mirror planes [cf. Fig. 3(b)], and 6mm has a total
of six mirror planes at angles differing by π

6 [cf. Fig. 3(c)].
For any vertical mirror symmetry m, we label the associated

FIG. 3. Vertical mirror planes, i.e., the ones containing the ro-
tation axis, of the magnetic point groups (a) 4mm and 4/m′mm,
(b) 4̄′2′m, (c) 6mm and 6/m′mm, (d) 6̄′m2′, 3m, and 3̄′m. Mirror
planes related by (rotation) symmetry are shown in the same color,
such that in (a) and (b) the different symmetry-unrelated sets of
mirror planes can be distinguished by their color. The gray boxes
are guides to the eye.

orthogonal vertical mirror symmetry by m⊥. For brevity, we
call the set of k points invariant under m(⊥) the m(⊥) plane.

The convenience of considering the pair of symmetries
(m, m⊥) is that the composition of m and m⊥ is simply
the C2 rotational symmetry around the HSL, and that these
symmetries commute and thus can be diagonalized simulta-
neously. Additionally, the subgroup of the MPG that maps
points on the m plane back to the m plane is exactly the
Abelian group {1, m, m⊥,C2} (with 1 the identity element),
which is fully generated by m and m⊥. Therefore, to derive a
symmetry-compatible k · p Hamiltonian inside the m plane, it
is sufficient to study the constraints from m and m⊥.

To introduce concrete labels, say that a TP is formed along
the HSL by the crossing of a 1D ICR ρ1D with a 2D ICR
ρ2D. The common feature of ρ2D in all the present cases is
that any mirror symmetry m ∈ MPG satisfies tr[ρ2D(m)] = 0.
Combined with the fact that the possible eigenvalues of m
are just +1 and −1, the vanishing trace implies that the 2D
ICR is spanned by two states with opposite eigenvalues of
m. Additionally, m and m⊥ commute, meaning that they can
be diagonalized simultaneously. Adopting a basis in which
the two symmetry operators are diagonal, the possible mirror
eigenvalues of the ICRs ρ2D and ρ1D (which appear on the
operator diagonals) are shown in Table III, where the only
adjustable parameters are the four signs ±p,q,r,t .

Let D be the representation that captures the three bands
involved in the triple point D = ρ2D ⊕ ρ1D. We work in the
basis in which ρ2D(m) and ρ2D(m⊥) are diagonal, and we

TABLE III. Possible mirror eigenvalues for the irreducible repre-
sentations involved in a triple point in one of the following magnetic
point groups: 4mm, 4̄′2′m, and 6mm. The two rows of ρ2D correspond
to the eigenvalues in the order defined by a particular choice of basis
of the 2D representation. This is well defined because m and m⊥
commute, such that the corresponding matrix representations can be
simultaneously diagonalized. Subscripts to ± indicate independent
signs. In the analysis of Sec. III B 1, we always rotate the basis such
that ±r1 = ∓p1.

m m⊥ C2 = m ◦ m⊥

±p1 ±q1 (±p1)(±q1)
ρ2D

∓p1 ∓q1 (±p1)(±q1)

ρ1D ±r1 ±t 1 (±r1)(±t 1)
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permute the basis of ρ2D such that the second eigenvalue of
ρ2D(m) is equal to ρ1D(m). Referring to Table III, this implies

±r1 = ∓p1, (1)

i.e., it fixes one of the four signs. In this basis, we then have
the following matrix representations:

D(m) =
⎛
⎝±p1

∓p1
∓p1

⎞
⎠,

D(m⊥) =
⎛
⎝±q1

∓q1
±t 1

⎞
⎠. (2)

Recall that a unitary symmetry g with representation D(g)
leads to the following constraint on the Hamiltonian:

H (k) = D(g)H (g−1k)D(g)−1. (3)

We define orthogonal coordinates (kx, kz ) in the m plane such
that kz runs along the rotation axis and such that the TP
is located at (kx, kz ) = 0. An expansion to leading order in
kx around the TP then takes the following form (see Ap-
pendix C 1 a for the derivation):

H (kx, kz ) =

⎛
⎜⎜⎝

ak2
x 0 0

0 −ak2
x Ak

3+s
2

x

0 A∗k
3+s

2
x kzb + ck2

x

⎞
⎟⎟⎠, (4)

where s = −(±q)(±t ) is a sign corresponding to the sign
of the product of the C2 characters of ρ2D and ρ1D,
a(kz ), b(kz ), c(kz ) are continuous real-valued functions, and
A(kz ) is a continuous complex-valued function. We suppress
the kz argument of the four functions in Eq. (4) to improve
readability. Note that in Eq. (4) we dropped some terms pro-
portional to the identity matrix, which are irrelevant to the
nodal structure, as they merely shift all energy bands equally.
The block-diagonal structure (which does not parallel the
blocks of ρ2D ⊕ ρ1D) arises from the two different eigenvalues
of D(m) in the m plane, and therefore persists to all orders of
the expansion.

There are two possibilities forH (kx, kz ) to have degenera-
cies in the spectrum (corresponding to band nodes): either
(1) the bottom right 2 × 2 block h23(kx, kz ) has degenerate
eigenvalues, or (2) it has an eigenvalue a(kz )k2

x . For (1), recall
that spectral degeneracies of a matrix correspond to the roots
of the characteristic polynomial, and that coinciding roots of
a polynomial can be diagnosed by a vanishing discriminant.
Therefore, we compute the discriminant of the characteristic
polynomial of h23(kx, kz ):[

(a + c)k2
x + bkz

]2 + 4|A|2k3+s
x = 0. (5)

Because s = ±1, the left-hand side of the equation is a sum
of two squares, and as such it has no real solutions except for
kx = kz = 0, which, by construction, is the TP.

On the other hand, condition (2) is satisfied if and only if

0 = det
[
h23(kx, kz ) − a(kz )k2

x1
]

= k2
x

[−2abkz + 2a(a − c)k2
x − |A|2k1+s

x

]
, (6)

where in the second line we dropped the functional depen-
dencies of a, b, c, and A. Equation (6) admits two types of
solutions. First, kx = 0 is always a solution that defines the
central NL along the kz axis. The second type of solution
corresponds to zeros of the expression in the square brackets.
Assuming that this solution appears close to the TP (which is
always the case for NL arcs of type-B TPs), we approximate
the variable functions by their values at kz = 0, i.e.,

f (kz ) ≈ f (kz = 0) ≡ f0 for f ∈ {a, b, c, A} (7)

and find the explicit root

karc
z (kx ) = a0 − c0

b0
k2

x − |A0|2
2a0b0

k1+s
x (8)

that describes the NL arcs.
To analyze the result in Eq. (8), first observe that for s =

+1, the NL arcs attach to the TP [because limkx→0 karc
z (kx ) =

0], while they generically do not attach to the TP for s = −1
[because limkx→0 karc

z (kx ) = −|A0|2/2a0b0]. We further read
from Eq. (8) that the NL arcs scale quadratically as a func-
tion of k := (k2

x + k2
y )1/2, i.e., karc

z (k) − karc
z (0) ∝ k2. Thus, we

conclude that the TP is type A (type Bq) if the product of C2

characters of ρ2D and ρ1D is negative (positive). Additionally,
we see from the more general Eq. (6) that a nexus of NL arcs
would coincide with a type-A TP when A0 = 0. Since A(kz ) is
a complex function, this is generically achieved by tuning two
real parameters, i.e., the sought codimension equals 2.

To finalize the type classification for the 3 MPGs discussed
here, we determine the value of s for each combination of 2D
and 1D ICRs ρ2D ⊕ ρ1D. This is achieved by looking up the
ICRs and C2 characters on the Bilbao crystallographic server
[68–70] using the program COREPRESENTATIONS PG [66,67].
We find that for 4mm and 4̄′2′m all combinations of ICRs
have s = −1, such that any TPs in those groups are type
A. The analysis is more subtle for 6mm: here, type-A TPs
(s = −1) are realized for the ICR combinations (E1; Ai ) and
(E2; Bi ), while type-Bq TPs (s = +1) for ICR combinations
(E1; Bi ) and (E2; Ai ). In the latter case we can also immedi-
ately conclude that nnexus

a = 12 (because there are two sets of
three symmetry-related mirror planes, and each mirror plane
contains two NL arcs starting at the TP).

2. Nodal-line arc characterization in MPGs 4mm, 4̄′2′m, and 6mm

We next derive characteristics of the NL arcs that appear
near the type-A and at the type-B TPs just identified. Although
the analysis in Sec. III B 1 was performed for one particular
choice of mirror-invariant m plane, the arguments [including
the results in Eqs. (5) to (8)] straightforwardly generalize.

To begin, note that the band structure respects the MPG
symmetry, which readily implies the following:

(i) NL arcs described by the same Eq. (6) and with the
same functions a, b, c, A also appear in all the symmetry-
related m planes [cf. Figs. 3(a)–3(c)].

Additionally, note that the sign s is a characteristic of the
two crossing ICRs at the HSL; especially, it does not depend
on the particular choice of m. Therefore, the whole algebraic
analysis can be repeated for vertical mirror planes m′ that are
not symmetry related to m [colored differently in Figs. 3(a)–
3(c)]. Note that for 4mm the mirrors m′ and m⊥ are different,
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FIG. 4. Nodal-line (NL) structure near a type-Bq triple point (TP)
on a high-symmetry line (HSL) with little cogroup 6mm, which
requires a specific combination (class II) of 2D and 1D irreducible
representations (cf. Table II). NLs are shown in red (blue) if they
are in the lower (upper) band gap of the three-band model and the
TP is indicated in yellow. (a), (b) show the two possibilities with red
(blue) NL arcs in one set of symmetry-related mirror planes and blue
(red) NL arcs in the other. The insets show the view on the nodal
lines from the top to clarify the arrangement of the NL arcs. An
analogous discussion applies to HSLs with little cogroup 6/m′mm
(with a class-II combination of irreducible corepresentations).

for 6mm we have m = m⊥, and for 4̄′2′m there is no m′. We
therefore deduce the following:

(ii) NL arcs in the m′ plane are defined by the same
implicit Eq. (6), although with a potentially different set of
functions a′, b′, c′, and A′.

In the following, we study the implications of observations
(i) and (ii) for the NL structure near the discussed TPs.

Let us first analyze the implications when s = +1, i.e.,
when the NL arcs are attached to a type-B TP. It follows from
(i) and (ii) that the TP must be connected to one NL arc in each
vertical mirror plane [such as shown in Fig. 2(d) for 6mm].
The NL arcs in the two sets of mirror planes are generally in
different energy gaps, which can be seen as follows. Accord-
ing to the derivation in Sec. III B 1, the energy of the two bands
involved in the NL along the NL arc kz = karc

z (kx ) is ak2
x . To

determine in which gap the NL lies, we need to compare it
to the energy of the third band, which can be deduced from
Eqs. (4) and (6) to be1

−
(

a + |A|2
2a

)
k2

x . (9)

It follows from comparing the three band energies that the NL
arc is in the red (blue) gap if a0 < 0 (a0 > 0).

Observation (ii) seems to suggest that the NL arcs in
symmetry-unrelated planes are independent of each other.
However, as revealed in Appendix C 2, the four functions
describing the expansions in m and m′ obey certain constraints
(explicitly derived in [63]). For the MPG 6mm and ICRs such
that s = +1, i.e., such that the resulting TP is type Bq, the

1As an intermediate step, note that Eq. (6) with s = +1 and kx �= 0
implies that, near the TP, bkz + ck2

x = ak2
x − (|A|2/2a)k2

x , and that
this is also equal to tr(H ) after substituting for the bottom-right
element of the matrix in Eq. (4). Since the trace is the sum of all
eigenvalues, and the other two eigenvalues were determined as ak2

x ,
the result in Eq. (9) follows.

FIG. 5. Nodal-line (NL) structure near a type-A triple point (TP)
on a high-symmetry line (HSL) with little cogroup 4mm. NLs are
shown in red (blue) if they are in the lower (upper) band gap of the
three-band model and the TP is indicated in yellow. Type-A TPs can
be accompanied by nearby nexus points on the central nodal line:
(a) on opposite sides of the TP if sign(a0) = −sign(a′

0), or (b) on
the same side if sign(a0) = sign(a′

0). (c) If the complex parameter
A0 is fine tuned to 0, the two nexus points (independently of their
color) simultaneously collide with the TP. An analogous discussion
applies for HSLs with little cogroup 4/m′mm, with the only relevant
change being the reduction of A0 to be a real (rather than complex)
parameter.

derived constraints are

a′ = −a, b′ = b, c′ = c, |A′| = |A|. (10)

Therefore, the NL arcs in one set of planes are in the red gap,
while the NL arcs in the other set of planes are in the blue gap.
Which set of planes contains NL arcs in which gap depends
on the parameter values as illustrated in Fig. 4.

In the remainder of this section, we analyze the implica-
tions of (i) and (ii) for s = −1, i.e., when the NL arcs connect
to the rotation axis away from a type-A TP. Here, note that a
crossing of NLs in the two different gaps would automatically
imply a threefold degeneracy (i.e., a TP) at the crossing;
therefore, it follows that the nexus of NL arcs associated with
type-A TPs are formed in the same gap (red/blue) as the
central nodal line at which the arcs converge [cf. Fig. 2(b)].

First, for MPG 4mm, the derived constraints on the func-
tions describing the expansion in m and m′ are

b′ = b, c′ = c, |A′| = |A|, (11)

while a(kz ) and a′(kz ) are unrelated. When plugged into
Eq. (6), we find that the functions a and a′ provide enough
freedom to realize nexus points of NLs in the two sets of
mirror planes that attach to the rotation axis at arbitrary and
different positions. In particular, the approximate result in
Eq. (8) derived in the lowest order in kz suggests one nexus
point for each set of symmetry-related m planes (this can
change when terms of higher order in kz are included). The
two nexus points can be on the opposite or on the same sides
of the TP, depending on the relative sign of the coefficients a0

and a′
0 [see Figs. 5(a) and 5(b). Generically, the two nexus

points do not coincide, such that nnexus
a = 4 = 2 × 2 (each

nexus point arises due to NL arcs in one set of two symmetry-
related mirror planes, and each plane contains two NL arcs
attached to the central NL).

Curiously, the constraint |A| = |A′| implies that the two
nexus points in the two pairs of planes collide with the TP
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FIG. 6. Nodal-line (NL) structure near a type-A triple point (TP)
on a high-symmetry line (HSL) with little cogroup 6mm, which
requires a specific combination (class I) of 2D and 1D irreducible
representations (cf. Table II). NLs are shown in red (blue) if they
are in the lower (upper) band gap of the three-band model and
the TP is indicated in yellow. As in the case of the little cogroup
4mm (cf. Fig. 5), type-A TPs in 6mm can be accompanied by nexus
points nearby on the central nodal line (NL). However, the points of
coalescence of NL arcs with the central NL in the inequivalent sets of
mirror planes always coincide, such that we only distinguish (a) blue
nexus points (a0 > 0), (b) red nexus points (a0 < 0), and (c) nexus
points fine tuned to collide with the TP (if the complex parameter A0

is set to zero), all with 12 NL arcs attached. An analogous discussion
applies for HSLs with little cogroup 6/m′mm, with the only relevant
change being the reduction of A0 to real values.

simultaneously. Notably, if sign(a0) = sign(a′
0), such that the

two nexus points are on the same side of the TP for A �= 0,
all the NL arcs converging at the fine-tuned type-A TP for
A0 = 0 would be in the same gap [cf. Fig. 5(c)]. This feature
sharply contrasts to type-B TPs for which the number of
attached NL arcs is always distributed equally over both gaps.
However, a situation similar to a type-B TP is also possible if
sign(a0) = −sign(a′

0) and A0 = 0.
Next, we analyze type-A TPs in the MPG 6mm. It is de-

rived in Appendix C 2 that the expansions in the two planes
obey

a′ = a, b′ = b, c′ = c, |A′| = |A|. (12)

Looking at Eq. (6), we find that NL arcs in both sets of
symmetry-related planes always attach to the same nexus
point as illustrated in Figs. 6(a) and 6(b), with blue and red
nexus points, respectively (distinguished by the sign of a0).
Therefore, we find nnexus

a = 12, i.e., the same as for type-B
TPs in the same MPG. However, one should bear in mind
that Eq. (6) was derived from a k · p expansion to finite order
in kx. It can be shown that higher-order terms discriminate
between the two sets of planes, meaning that the NL arcs in
m planes and m′ planes disperse differently for large enough
distance k from the rotation axis. All these described features
are clearly manifested by the type-A TP of the compound
AlN (see Fig. 16 in the Appendix). Finally, when the complex
parameter A0 is set to zero, the 12 NL arcs attached to the
fine-tuned type-A TP are all in the same gap [cf. Fig. 6(c)],
such that the type-A TP can always be distinguished from the
type-B TP.

Lastly, for 4̄′2′m there is only one set of symmetry-related
mirror planes; in this case, there is only a single nexus point
with four NL arcs: nnexus

a = 4.

3. 6̄′m2′

The group 6̄′m2′ is similar to the cases discussed above
in Secs. III B 1 and III B 2, with one crucial difference: each
of the three C3-symmetry-related vertical mirrors m [cf.
Fig. 3(d)] is paired with a pseudomirror m⊥PT (here m⊥ is
again the mirror perpendicular to m; note that neither m⊥ nor
PT is an element of the symmetry group). We proceed anal-
ogously, but need to be careful because m⊥PT is antiunitary,
such that we have to deal with corepresentations rather than
representations. For an antiunitary symmetry g, the symmetry
constraint in Eq. (3) needs to be replaced by

H (k) = D(g)H (g−1k)
∗
D(g)−1, (13)

where D(g) is the matrix corepresentation of g. (See Ap-
pendix A for a brief review of the representation theory
of groups with antiunitary symmetries.) For the two possi-
ble combinations of irreducible corepresentations of 6̄′m2′
(E ; A1) [upper sign in Eq. (14)] and (E ; A2) (lower sign), this
implies the following form of the Hamiltonian in the mirror
plane (see Appendix C 1 b for the derivation):

H (kx, kz ) =
⎛
⎝ak2

x 0 0
0 −ak2

x d (1 ∓ i)kx

0 d (1 ± i)kx bkz + ck2
x

⎞
⎠, (14)

where a, b, c, d are continuous real-valued functions of kz.
We observe that Eq. (14) is identical to Eq. (4) with A =

d (1 ∓ i) and s = −1, such that we can immediately obtain
the implicit equation for NL arcs from Eq. (6), namely,

−2abkz + 2a(a − c)k2
x − 2|d|2k1+s

x = 0. (15)

From here, assuming the functions a, b, c, d are approxi-
mately constant near the TP, we obtain the result for the NL
arcs

kz = karc
z (kx ) ≡ a0 − c0

b0
k2

x − d2
0

a0b0
, (16)

where d0 = d (kz = 0). Therefore, we find that TPs in 6̄′m2′
are always type A. Since there is only one set of symmetry-
related planes, only one nexus point is present in the k · p
expansion, and nnexus

a = 6, because there are three mirror
planes with two NL arcs starting at the nexus point each.
Additionally, because d is a real parameter, the codimension
for colliding the nexus point with the TP is 1.

4. 3m

Finally, we discuss the remaining MPG 3m, which
has threefold rotational symmetry with three vertical mir-
rors that are not associated with corresponding orthogonal
(pseudo)mirror planes [cf. Fig. 3(d)]. Again, we choose co-
ordinates (kx, kz ) in the mirror plane under consideration
(the three mirror planes are equivalent due to rotational
symmetry), then the Hamiltonian for all possible combina-
tions of ICRs takes the form (see Appendix C 1 c for the
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derivation)

H (kx, kz ) =
⎛
⎝akx 0 0

0 −akx Akx

0 A∗kx bkz + ckx

⎞
⎠, (17)

where a, b, c are real-valued functions and A is a complex-
valued function of kz.

Degeneracies in the spectrum are obtained (1) if

[(a + c)kx + bkz]
2 + 4|A|kx2 = 0, (18)

with the only solution kx = kz = 0 (the TP), and (2) if

0 = det [h23(kx, kz ) − akx1] (19)

= kx[−2abkz + 2a(a − c)kx − |A|2kx]. (20)

The latter equation has two solutions. First, kx = 0 (the central
NL), and, second, after approximating a, b, c, A as constants
in the vicinity of the TP,

kz =
(

a0 − c0

b0
− |A0|2

2a0b0

)
kx (21)

(the NL arc). Since limkx→0 karc
z (kx ) = 0, the NL arc attaches

to the TP and it does so linearly as a function of (k2
x + k2

y )1/2,
such that the TP is always type Bl . We again find that nnexus

a =
6 (due to three symmetry-related mirror planes with two NL
arcs in each).

IV. DERIVATION IN THE PRESENCE OF PT SYMMETRY

There are six relevant MPGs with PT symmetry listed in
Table I that can protect a TP along a HSL: 3̄′, 3̄′m, 4/m′,
4/m′mm, 6/m′, and 6/m′mm. The discussion of these MPGs
is rather involved because NLs can be stabilized by PT
symmetry anywhere in the momentum space [22,71], i.e.,
they are not constrained to symmetric planes. Although we
ultimately find the resulting classification to be the same (up
to a reduction of the codimension where applicable) as for the
corresponding MPGs without PT symmetry (specifically 3m,
4mm, and 6mm analyzed in Sec. III B), the minimal k · p mod-
els and their analysis are considerably more complicated, and
much of the explicit algebra is carried out in a supplementary
Mathematica notebook [63].

Initially, we proceed similarly to the previous section: we
construct minimal k · p models for the Hamiltonian near the
TP in the various MPGs (see Appendix D 1). However, due
to the presence of PT symmetry, we cannot restrict to mirror
planes and need to study the full 3D k · p models. In con-
trast to Sec. III, we here find it more convenient to perform
the expansion in all three momentum components of k. In
this section, we focus on introducing the relevant methods;
in particular, in Sec. IV A, we describe the techniques we
developed to determine the leading-order terms of the k · p
expansion, while in Sec. IV B we show how to deduce the
NL structure near the TP from the obtained leading-order
expansions. While we defer concrete calculations and proofs
to a supplementary Mathematica notebook [63], several rep-
resentative calculations are included in Appendix D 2.

In addition, the presence of PT symmetry implies fur-
ther topological aspects of the triple points: the central NLs
containing the triple points are characterized [45] by the

TABLE IV. Classification of triple points (TPs) on high-
symmetry lines with little cogroupGk containingPT symmetry. The
TP is characterized by whether nodal-line (NL) arcs attach to it (type
A) or not (type B) [29]. We further distinguish type-B TPs according
to the scaling of the attached NL arcs kz ∝ (k2

x + k2
y )μ/2: type-Bq TPs

have μ = 2 and type-Bl TPs have μ = 1. For all TP types we further
define nnexus

a as the number (this quantity has to be distinguished from
Na introduced in Ref. [45] which is the number of NL arcs attached
to a type-B TP per gap; for type-B TPs Na = 1

2 nnexus
a ) of NL arcs

attached to a generic nexus point (coinciding with the TP for type
B, in the vicinity of the TP for type A). These properties depend on
Gk and, in general, on the irreducible corepresentations (ICRs) of
the bands involved in the TP formation. The notation for the ICRs
follows Ref. [64], with i = 1, 2. For most little cogroups, all possible
pairs of ICRs are equivalent (cf. text); only for the C6-symmetric
groups do the pairs fall into two equivalence classes (denoted by I
and II in the second column). In the last column we list the winding
number w2D of the 2D ICR computed on a closed contour around the
central NL.

Gk Class ICRs TP type nnexus
a μ |w2D|

3̄′ (2E 1E ; A1) Bl 6 1 1
3̄′m (E ; Ai ) Bl 6 1 1

4/m′ (2E 1E ; A), (2E 1E ; B) A 4 2 2
4/m′mm (E ; Ai ), (E ; Bi ) A 4 2 2

6/m′ I (2E 2
1E 2; A), (2E 1

1E 1; B) A 12 2 2
II (2E 1

1E 1; A), (2E 2
1E 2; B) Bq 12 2 2

6/m′mm
I (E1; Ai ), (E2; Bi ) A 12 2 2
II (E1; Bi ), (E2; Ai ) Bq 12 2 2

non-Abelian [55,59] (also called “generalized-quaternion”)
invariant, and pairs of TPs are characterized [46] by Euler
and Stiefel-Whitney monopole charges [22,57,58,60,71–73].
While an extensive discussion of the latter appears in a sepa-
rate publication [46], we show in Sec. IV C that the quaternion
invariant computed on a closed contour surrounding only the
central nodal line (indicated by the winding number of the
2D ICR computed on the same contour) is also determined by
symmetry. The full results of the classification in the presence
of PT symmetry are listed in Table IV.

A. Condition for the occurrence of NL arcs near TPs

The first step in deriving the classification is once more the
construction of minimal k · p models describing the Hamilto-
nian near the TP (this time we use the full 3D k · p models).
We keep only traceless terms of leading order in k (leading in
each momentum component separately) and without loss of
generality we set the energy of the 2D ICR for k = (0, 0, kz )
to zero and the TP position to the origin k = 0. It is always
possible to find a basis in which PT is represented by com-
plex conjugation K [59]; then, the Bloch Hamiltonian is a
real symmetric matrix. For a given MPG, the leading-order
k · p expansions for various combinations of 1D and 2D ICRs
result in Hamiltonian families Ha(k) parametrized by real
parameters ai, collected in the vector a, which we provide in
[63]. Further details on the derivation of the leading-order k ·
p models, including an explicit discussion for ICRs (E1; A1)
of 6/m′mm, are presented in Appendix D 1.
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For a given MPG, most combinations of ICRs lead to
equivalent Hamiltonian families in the following sense. Let
χ [H] be the characteristic polynomial of some Hamiltonian
H ; then, we call two familiesH (1,2)

a (k) equivalent if

χ
[
H (1)

ã (k̃)
] = χ

[
H (2)

a (k)
]

(22)

for k̃ and ã related to k and a by linear transformations (in
Appendix D 2 a we discuss one example of such an equiva-
lence). In particular, this implies that the Hamiltonian spectra
are also equal up to the same linear transformations of k
and a. Defining equivalence according to Eq. (22), we find
[45,63] that the k · p models for 6/m′ and 6/m′mm fall into
two equivalence classes, while all the other MPGs only have a
single equivalence class (Table IV). Since NLs are properties
of the spectrum alone, we restrict the analysis of the TP char-
acteristics to one representative for each equivalence class.

We next determine the number of NL arcs attached to the
TP by analyzing the discriminant �[H] of the characteristic
polynomial χ [H], similar to our analysis in the previous
section. However, while in Sec. III the restriction to mirror
planes led us to analyze the characteristic polynomial of a
2 × 2 Hamiltonian block, for the presently studied MPGs we
are led to consider the characteristic polynomial of the full
3 × 3 k · p Hamiltonian. Because zeros of �[H] correspond
to NLs, we need to solve the multivariate polynomial equation

�[Ha(k)] = 0 (23)

with parameters a over k ∈ R3 to find the NLs. By construc-
tion, the line kx = ky = 0 is always a solution with some
multiplicity r. Determining the NL arcs (if there are any)
corresponds to finding additional real roots of Eq. (23). How-
ever, since the characteristic polynomial of the 3 × 3 k · p
model is of high order in the momentum components, this is a
nontrivial task that requires methods beyond those described
in Sec. III.

Because we are primarily interested in NLs attached to the
TP at k = 0, we focus on the leading terms of �[Ha(k)]. In
cylindrical coordinates (k, θ, kz ) we can consider θ ∈ [0, 2π )
as an additional parameter, such that the discriminant is a
bivariate polynomial in k, kz,

�a,θ (k, kz ) = �[Ha(k cos θ, k sin θ, kz )]

= kr
∑
α,β

cαβ (θ, a)kαkβ
z

(24)

with real coefficients cαβ (θ, a). The particular exponents
(α, β ) of the bivariate monomials that appear in Eq. (24) de-
pend on the choice of the MPG and of its ICRs. To determine
the leading-order monomials of �a,θ (k, kz ), note that NL arcs
attached to the TP have an anticipated functional dependence

karc
z (k) ∝ kμ for some μ ∈ R+ (25)

in the vicinity of the TP. Such a root of �a,θ (k, kz ) is only
attainable if the exponents (α′, β ′) of the leading-order mono-
mials kα′

kβ ′
z obey α′ + μβ ′ = const. To determine all leading

terms in Eq. (25), we need to account for arbitrary prospective
scalings 0 < μ < ∞, i.e., we need to keep all the bivariate
monomials kαkβ

z such that kα+μβ is of leading order for at
least one value of μ.

We now describe a systematic procedure for identifying the
leading terms. Let

M = { (α, β ) ∈ R+|cαβ (θ, a) �≡ 0} (26)

be the set of monomials that appear in �a,θ (k, kz ), where
“ f1 �≡ f2” indicates that functions f1 and f2 are not identical;
then, for each fixed scaling 0 < μ < ∞, the set of leading
monomials is

Lμ(M ) = argmin
(α, β )∈M

(α + μβ ). (27)

Geometrically, Lμ(M ) is the set of points in M that lie on a
line of slope −1/μ, such that the origin (α, β ) = (0, 0) is on
one side and all the other points of M are on the other side of
this line (cf. Fig. 13). Naturally, the union of such sets gives
the set of all leading monomials:

L(M ) =
⋃

0<μ<∞
Lμ(M ). (28)

We note that this is equivalent to the part of the convex hull
of M that faces the origin, which is useful for explicitly com-
puting L(M ). For more details see the example discussed in
Appendix D 2 c and Fig. 13 therein.

B. TP characterization from the leading-order expansion

Knowing the general principles that determine the leading-
order terms of the discriminant in Eq. (24), we next discuss
how to derive the studied characteristics of the TPs. The dis-
cussion is divided into several parts, corresponding to distinct
collections of PT -symmetric MPGs. First, in Sec. IV B 1,
we consider the MPGs where the restriction to leading-order
terms reveals the absence of nontrivial roots of the discrim-
inant, resulting in type-A TPs. In the remaining Sec. IV B 2
(with mirror symmetry) and Sec. IV B 3 (without mirror
symmetry), the discriminant in Eq. (24) turns out to be quasi-
homogeneous, i.e., there is a scaling factor μ for which all
the monomials are of the same order. This implies that all the
terms in the discriminant that are obtained from the leading-
order k · p Hamiltonian are themselves leading. Here, we are
led to develop additional arguments, which unambiguously
reveal that the TPs in these MPGs are always of type B. Due to
the extensiveness of the underlying algebraic manipulations,
the detailed analysis for all the MPGs and all combinations
of ICRs is made available as part of the supplementary data
and code [63], with only a few representative calculations
presented explicitly in Appendix D.

1. MPGs 4/m′(mm) and class I of MPGs 6/m′(mm)

We begin with MPGs 4/m′, 4/m′mm, and with class-I
Hamiltonians of MPGs 6/m′ and 6/m′mm, when the restric-
tion to leading terms results in a significant simplification.
Namely, �a,θ (k, kz )/kr is a quadratic polynomial in k and kz

with non-negative coefficients [as exemplified by Eq. (D13)
for class I of 6/m′mm]. We are then able to prove that for
generic a and all θ there are no real roots other than the one
at k = 0 the central NL). This implies that there are no NL
arcs attached to the TP, such that the TP is classified as type
A [Fig. 2(a)]. The relevant point groups and corepresentations
for which this situation arises are indicated in Table IV.
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Note that while there are no NL arcs attached to the TP,
there is a possibility (analogous to the corresponding cases
withoutPT symmetry) of nexus points occurring near the TP,
i.e., additional NL arcs coalescing at the central NL away from
the TP [Fig. 2(b)]. To obtain those NL arcs, we depart from
the same leading-order k · p Hamiltonian, but keep all terms
in Eq. (24) [i.e., M and not only L(M )]. We find [63] that in
the fourfold-symmetric case there are two nexus points with
four NL arcs each, nnexus

a = 4, and in the sixfold-symmetric
case, there is one nexus point with 12 NL arcs, nnexus

a = 12. In
Appendix D 2 e, we illustrate this using the example 4/m′mm.
It is further manifest from the analytic solutions [63] that
a single real-valued parameter needs to be tuned to collide
the nexus point with the TP, leading to codimension 1 (in
contrast to codimension 2 in the analogous MPGs without
PT symmetry). In analogy with the MPG 4mm (discussed in
Sec. III B 2), such fine tuning collides the TP simultaneously
with two nexus points [cf. Fig. 5(c)]; these two nexus points
could be either of the same or of opposite color. In this re-
spect, we illustrate in Sec. V B (Fig. 12) a particular example
of a material (ZrO [48], the relevant HSL is � = �X with
little cogroup 4/m′mm) for which the nexus point appears to
closely coincide with a type-A TP due to such an accidental
fine tuning of the relevant model parameter (see Sec. V B).

2. MPGs with mirror symmetries: 3̄′m and class II of 6/m′mm

For 3̄′m and class-II 6/m′mm the discriminant
�a,θ (k, kz )/kr of the leading-order Hamiltonian turns out
to be quasihomogeneous with μ = 1 (μ = 2) for 3̄′m (class-II
6/m′mm). We find �a,θ (k, kz )/kr to be a fourth-order
polynomial in kz, such that the nature of the roots [74] can
be determined analytically. More precisely, we determine
[63] the conditions on the parameters a, θ for the presence
of a certain number of real roots using Mathematica (see
Appendix D 2 d for a detailed discussion of how we formulate
these conditions).

The described analysis of the quartic polynomial reveals
that there is either a single real root (indicating a NL) or
no real root (indicating the absence of NLs away from the
rotation axis), depending on the values of the parameters a
and θ . In particular, the requirement of a real root restricts
θ to discrete values π

4 , 7π
12 (mod 2π

3 ) for 3̄′m [ π
12 , π

4 (mod π
3 )

for class-II 6/m′mm], which correspond exactly to the mirror
planes [cf. Figs. 3(d) and 3(c), respectively], in which case
generic values of a yield a root of the discriminant that con-
tinuously connects to k = 0, meaning that the TPs are of type
B. Additionally, the value of the scaling factor μ = 1 (μ = 2)
fixes the attachment of the NL arcs to be linear (quadratic). We
therefore conclude that 3̄′m gives type-Bl TPs with nnexus

a = 6
[Fig. 2(c)], while class-II 6/m′mm gives type-Bq TPs with
nnexus

a = 12 [Fig. 2(d)]. Although the presence, number and
scaling μ of the NL arcs do not depend on the parameters a
(up to fine-tuning) of the model, the precise NL structure does.
We illustrate three examples of the possible variations for the
MPG 3̄′m in Fig. 7.

3. MPGs without mirror symmetries: 3̄′ and class II of 6/m′

We finally discuss the MPG 3̄′ and class-II Hamiltonians of
the MPG 6/m′. In these cases, �a,θ (k, kz )/kr is again quasiho-

FIG. 7. Nodal-line (NL) structure near a type-Bl triple point on a
high-symmetry line with little cogroup 3̄′m (or 3m). NLs are shown
in red (blue) if they are in the lower (upper) band gap of the three-
band model and the TP is indicated in yellow. The NL arc always
changes gap (and therefore its color) when passing through the TP,
but several different arrangements are possible as illustrated.

mogeneous with μ = 1 (μ = 2 for 6/m′), and the discriminant
is a fourth-order polynomial in kz; however, in contrast to
Sec. IV B 2, the presently considered MPGs have no mir-
ror symmetries, leading to an increased number of terms in
the leading-order k · p Hamiltonian. While the procedure de-
scribed above is in principle still applicable, we find that the
conditions for real roots of �a,θ (k, kz )/kr become too compli-
cated for Mathematica to handle and simplify. However, we
argue below that the (qualitative) NL structure near the TP is
the same as in the corresponding cases with mirror symmetry,
up to a rotation of the coordinates that is determined by the
model parameters.

More specifically, we find that the leading-order k · p
model for the MPGs without mirror symmetry has two addi-
tional terms compared to the corresponding k · p models with
mirror symmetry (discussed in Sec. IV B 2). The particular
structure of these additional terms is rather fortunate: they can
both be generated from terms already present in the mirror-
symmetric k · p expansion via an SO(2) rotation of (kx, ky )
coordinates. In particular, one can always find a suitable ro-
tation of the coordinates that removes one of these additional
terms (the rotations needed to remove either of the two addi-
tional terms are generically different, making it impossible to
rotate away both of these new terms simultaneously). There-
fore, a suitable rotation of the momentum coordinates leaves
us with only one extra term compared to the k · p models with
mirror symmetry. Additionally, while the one remaining new
term cannot be removed on the level of the leading-order k · p
Hamiltonian, it can be removed on the level of the charac-
teristic polynomial by another momentum-space rotation and
reparametrization. In Appendix D 2 f we discuss this reduction
using a concrete example.

After performing both of these coordinate transformations
and the reparametrization, we reduce the characteristic poly-
nomials of 3̄′ and for class II 6/m′ to those of 3̄′m and of class
II 6/m′mm, respectively. Therefore, the TP characterization
derived in Sec. IV B 2 translates directly to the MPG without
mirror symmetry. The results are summarized in Table IV.

C. Winding number of the 2D ICRs

For two-band spinless PT -symmetric systems, the wind-
ing number of a 2D ICR, i.e., computed on a contour around
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the corresponding NL, is an integer topological invariant [22].
This integer invariant is delicate [75], in the sense that it
ceases to be defined in models with three or more bands. Nev-
ertheless, we are interested in the value of this integer invariant
for the 2D ICRs involved in the TPs listed in Table IV because
it determines both the Z2-quantized Berry phase [76] as well
as the non-Abelian topological invariant [55] carried by the
central nodal line in models with three or more bands [56],
including the presently studied k · p models of TPs [45].

To determine the winding number of the 2D ICRs, we con-
struct additional minimal two-band k · p models. Because the
kz dependence is not directly relevant to the winding number
and is not restricted by symmetry, it can be absorbed in the
coefficients of the k · p expansion. This results in traceless
models of the form

Ha(k) = ha(kx, ky) · σ (29)

with σ = (σx, σz ) the real Pauli matrices, ha(kx, ky) a real two-
component vector, and a a (minimal) list of real parameters.
By construction ha(0, 0) = 0 for all a, which corresponds to
the central NL along the HSL. The explicit models we used
are provided in [63].

The winding number w2D of ha(k) along a tight contour
around that NL (suppressing the dependence on the parameter
a) is given by

w2D = 1

2π

∮
C

dk ·
(

hx(k)∇khz(k) − hz(k)∇khx(k)

h(k)2

)
.

(30)
This calculation can easily be completed analytically by sim-
ply plugging ha(kx, ky) in Eq. (30) for all cases except for
4/m′; in the latter case, going to polar coordinates and de-
forming the contour appropriately is necessary to complete
the integration. The integrations are performed in Mathemat-
ica and we provide the corresponding notebook in [63]; an
illustrative calculation for ICR E1 of 6/m′mm is shown in
Appendix D 2 b. The results are shown in Table IV. Note that
|w2D| depends only on the MPG and not on the particular
choice of 2D ICR; furthermore, we observe that |w2D| = μ.

The fact that threefold-symmetric MPGs give rise to type-
Bl TPs with |w2D| = 1 can be intuitively understood (at least
in the presence of mirror symmetry) based on Berry phases
as follows. Recall that the PT symmetry quantizes the Berry
phase φB on any closed contour (along which a specific energy
gap of the spectrum is preserved) to 0 vs π . In particular,
this holds for contours around nodal lines, such that we can
assign the quantized Berry phase to each NL (in analogy with
assigning the integer winding number to NLs in two-band
models). Nodal lines that are protected by either PT or mirror
symmetry mv generally carry Berry phase φB = π [71]. At
a type-B TP, 1

2 nnexus
a NL arcs, each carrying Berry phase π ,

annihilate together with the central NL (here, we count NLs in
one energy gap), therefore, the Berry phase of the central NL
must be φB = 1

2 nnexus
a π (mod 2π ), which results in φB = π

for TPs in C3-symmetric MPGs and φB = 0 in C6-symmetric
MPGs.

Finally, we consider the implications of the winding num-
ber for the non-Abelian charge. Note that the integer winding
number is only defined for two-band blocks that are separated
from the remaining bands by energy gaps; in particular, for the

full three-band model exhibiting the TP, the winding number
of the central NL cannot be defined anymore. In fact, the cen-
tral NL is transferred from one gap to another at the TP, such
that on the two sides of the TP the integer winding number
would have to be computed with respect to different energy
gaps. In contrast, the non-Abelian band invariant [55,59] is
sensitive to closing either of the two energy gaps of the three-
band model. Crucially, the non-Abelian invariant q preserves
partial information contained in the integer winding number
when additional (trivial) bands are added; more concretely we
have the reduction [56]

w2D = 0 mod 4 ⇒ q = 0 and

w2D = 2 mod 4 ⇒ q = −1.
(31)

We therefore conclude that TPs of types A and Bq are as-
sociated with a non-Abelian charge q = −1 computed on a
contour encircling the central NL.

The two values of the non-Abelian invariant in Eq. (31)
cannot be distinguished by the Berry phases on the individual
bands [55]. However, the value q = −1 poses an obstruction
to remove the enclosed band degeneracy as long as the PT
symmetry is present. This aspect has been utilized in our
recent work [45] to uncover a relation between certain TPs
and multiband nodal links, and is considered in our parallel
publication [46] to reveal higher-order topology associated
with pairs of TPs with a semimetallic band dispersion.

V. MATERIAL EXAMPLES

The classification of TPs derived above allows us to pre-
dict, based on symmetry properties, the possibility of stable
TPs (including their type) in real materials. In Table V we
list several compounds as representative triple-point materials
with weak SOC, which are subject to our derived classi-
fication. Some of these compounds have been previously
described [36,45,47,48,50,51], while others have, to the best
of our knowledge, not been reported as TP materials before.

For each listed material, we analyze selected TPs and ver-
ify their type against the predictions we made in the previous
sections. We provide access to all the first-principles data in
[63] and present relevant figures for all compounds in Ap-
pendix E. In Sec. V B, we discuss a few selected examples
to illustrate our procedure and highlight some interesting as-
pects. The results on the TP types are summarized in the last
three columns of Table V and agree with the classification in
Table II.

A. Methods

Based on the little groups that can stabilize TPs (listed
in Table I) and the program MKVEC on the Bilbao crystal-
lographic server (BCS) [65–69,77], one can easily scan all
magnetic space groups to identify those that support TPs
(i.e., both 1D and 2D ICRs) on high-symmetry lines. This
search (for type-II magnetic space groups, i.e., those that
exhibit no magnetic order) has been very recently performed
independently by Feng et al. in Ref. [42] and their list of
admissible little cogroups matches ours. The relevant space
groups and high-symmetry lines are listed in Table II in
Ref. [42]. Here, we also restrict to finding representative
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TABLE V. Examples of triple-point (TP) materials. For each material (rows), the following information is listed (in consecutive columns):
the space group (SG), the number of its entry in the Inorganic Crystal Structure Database (ICSD) if applicable, the high-symmetry line (HSL)
on which the TP of interest lies, the little cogroup Gk of that HSL given in Hermann-Mauguin notation [64], the irreducible corepresentations
(ICRs) of the bands involved in the TP formation, the energy of the TP ETP relative to the Fermi energy, the type, the number nnexus

a of nodal-line
arcs attached to a nexus point (either coinciding with the TP or not) if there is one, the scaling of those nodal-line arcs μ [kz ∝ (k2

x + k2
y )μ/2], and

finally a reference to the figure containing the relevant data. The identified type, and values of nnexus
a , μ for all materials match our theoretical

predictions in Table II.

Material SG ICSD number HSL Gk ICRs ETP Type nnexus
a μ Figure

SiO2 82 75647 � (�Z ) 4̄′ (BB;A) −0.62 eV A 26
Li4HN 88 409633 � (�M ) 4/m′ (2E 1E ; B) −0.92 eV A 4 2 27
CaNaP 107 � (�M ) 4mm (E ; A1) 4.1 eV A 4 2 9
Na2LiN 129 92309 � (�Z ) 4/m′mm (E ; A1) −1.0 eV A 14
B2CN 156 183791 � (�A) 3m (E ; A1) 9.3 eV Bl 6 1 11
MgH2O2 164 34401 P (KH ) 3̄′ (2E 1E ; A1) −1.4 eV Bl 6 1 29
P 166 53301 � (�Z ) 3̄′m (E ; A1) 1.5 eV Bl 6 1 15
Li2Co12P7 174 656419 � (�A) 6̄′ (2E 1E ; A1) −0.17 eV A 30

C3N4 176 246661 � (�A) 6/m′ (2E 1
1E 1; A) −9.3 eV Bq 12 2 31

(2E 2
1E 2; A) −2.6 eV A 32

AlN 186 31169 � (�A) 6mm (E1; A1) −0.28 eV A 12 2 16
(E2; A1) −0.85 eV Bq 12 2 17

Li4N 187 675123 � (�A) 6̄′m2′ (E ; A1) −0.68 eV A 6 2 18
Na2O 189 � (�A) 6̄′m2′ (E ; A1) −0.26 eV A 6 2 19
Li2NaN [50] 191 92308 � (�A) 6/m′mm (E1; A1) −48 meV A 20

TiB2 [36] 191 30330 � (�A) 6/m′mm (E1; A1) 0.57 eV A 21
(E2; A1) 1.3 eV Bq 12 2 10

Na3N [51] 194 � (�A) 6/m′mm (E2; A1) −93 meV Bq 12 2 22
(E1; A1) −38 meV A 8

C3N4 215 83264 � (�X ) 4̄′2′m (B2B1; A1) −6.5 eV A 23

ZrO [48] 225 76019 � (�X ) 4/m′mm (E ; A1) 0.12 eV A 4 2 24
(E ; B1) 2.0 eV A 4 2 12

materials in type-II magnetic space groups. Exhaustive lists
of (magnetic) space groups of any type and high-symmetry
lines supporting various quasiparticles, including TPs, have
recently been published in Refs. [52–54].

For each of the type-II magnetic space groups listed in
Table II in Ref. [42], we performed a search of compounds
with light elements (from the first three rows of the periodic
system) on the Topological Materials Database [78–80]. By
looking at the irreducible representation on high-symmetry
points (for the case without spin-orbit coupling) and using
the program MCOMPREL [65–67] on the BCS, we inferred the
ICRs and their dimension along the relevant HSL and iden-
tified crossings of 2D with 1D ICRs, i.e., TPs. This resulted
in a list of several hundred candidate materials from which
we selected the most promising ones [our arbitrary criteria
adopted a tradeoff between TPs being close to the Fermi
level (with the distance counted in number of bands rather
than in energy), a small number of additional degeneracies,
and well-separated nodal lines] to illustrate and verify our
classification.

We analyzed the selected materials as well as the materials
from Refs. [36,45,47,48,50,51] in detail by performing first-
principles calculations ourselves as detailed below. For that,
DFT calculations with the projected augmented wave (PAW)
method are implemented in the Vienna ab initio simulation

package (VASP) [81,82] with generalized gradient approxima-
tion (GGA) using PBE functional pseudopotentials [83]. A
6 × 6 × 6 uniform mesh for bulk k space provided converged
total energies. For the 2D planes a 140 × 140 (100 × 100
for Si2O and Li2Co12P7) mesh is used to calculate the band
gap. Using plane-wave-based wave functions and space-group
operators generated by VASP, we calculate the traces of matrix
representations to get the irreducible representations of the
energy bands at high-symmetry points in the first Brillouin
zone with the help of IRREP [84]. Using compatibility relations
[77] we then deduce the irreducible (co)representations of the
lines of symmetry shown in the sixth row of Table V.

B. Examples

Here, we discuss some examples of TP materials in order
to illustrate how we used first-principles calculations to verify
the predictions of our classification for the NL structure near
the TPs. We start with the following four materials: Na3N
hosting a type-A TP without nexus points, CaNaP hosting
a type-A TP with nexus points, TiB2 hosting a type-Bq TP,
and B2CN hosting a type-Bl TP. The first-principles data for
these four compounds are shown in Figs. 8–11, in the given
order. In each figure, the band structure on high-symmetry
lines is shown in panel (a); therein, the TP is indicated by
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FIG. 8. Nodal-line structure of Na3N near the triple point (TP) at ETP = −38 meV lying on the � line with little cogroup 6/m′mm (cf.
Table V). (a) Band structure along lines of symmetry. The TP is indicated by a yellow dot and arrow, and the bands forming the TP are labeled
by their irreducible corepresentations. (b) Brillouin zone (boundary in gray) with points and lines of symmetry (black dashed lines) and the
two inequivalent mirror planes (orange and purple planes). Note that there are additional symmetry-related mirror planes for each of those
two. (c) Size of the lower (red) and upper (blue) gaps in the two mirror planes shown in (b) encoded by the intensity of the color (higher color
saturation implies smaller energy gap between the corresponding pair of bands). The gap is only plotted up to a cutoff of 0.01 eV such that
white color indicates a gap larger than that. The TP (yellow) and the central nodal line are emphasized by appropriately colored overlays and
the data show that the TP is type A. Furthermore, there are no nexus points present, even though they could be stabilized.

FIG. 9. Nodal-line structure of CaNaP near the triple point (TP) on the � line with little cogroup 4mm. The organization of the panels is in
one-to-one correspondence with Fig. 8 and the cutoff on the gap size was chosen to be 0.05 eV. No nodal lines are attached to the TP, such that
we conclude it to be type A. Note the occurrence of a nexus of four (due to the fourfold rotational symmetry) red nodal lines near the TP, from
which we can deduce that nnexus

a = 4 and μ = 2. Our theoretical analysis predicts that two parameters need to be tuned to collide the nexus
point with the TP.

FIG. 10. Nodal-line structure of TiB2 near the triple point (TP) at ETP = 1.3 eV lying on the � line with little cogroup 6/m′mm. The
organization of the panels is in one-to-one correspondence with Fig. 8 with a cutoff of 0.05 eV on the gap size that is shown in (c). Note the
NL arcs attaching quadratically (kz ∝ k2

x + k2
y ) to the TP, i.e., the two nexus points coincide with the TP, implying that the TP is type Bq. Due

to the rotational symmetry, there are six nodal-line arcs in each of the two gaps (shown in red and blue, respectively), implying nnexus
a = 12.
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FIG. 11. Nodal-line structure of B2CN near the triple point (TP) on the � line with little cogroup 3m. The organization of the panels is in
one-to-one correspondence with Fig. 8 (except for the fact that only one inequivalent high-symmetry plane is now present) and the cutoff on
the gap size was chosen to be 0.02 eV. Note the NL arcs attaching to the TP, i.e., the two nexus points coincide with the TP and that the NLs

scale linearly, kz ∝
√

k2
x + k2

y , implying a type-Bl TP. Due to the threefold rotational symmetry, there are nnexus
a = 6 nodal-line arcs in total.

a yellow dot and arrow, and the bands involved in the TP
formation are labeled by their irreducible corepresentations.
The corresponding Brillouin zone is illustrated in panel (b) of
each figure.

To detect NLs, we perform additional DFT calculations
in the appropriate planes containing the nodal lines close to
the TP. For compounds with mirror symmetries, these are the
mirror planes; for the other compounds we first study slices of
fixed kz to detect any NLs close to the central nodal line, and
if there are any, we determine the plane in which they lie in
the vicinity of the central NL. In panel (c) of each figure we
then plot the magnitude of the two gaps between the three
bands involved in the TP formation (larger color saturation
implies smaller energy gap), with the lower (upper) gap data
shown in red (blue) color, as usual. The TP is located where
the central NL changes color (and sum of the two gaps is
minimal). Choosing a suitable cutoff for the gap size, we can
also easily recognize the additional NLs and infer the number
of NLs attached to the TP as well as their momentum-space
behavior μ, which directly determines the type of the TP.

We briefly discuss one peculiar TP found in ZrO. Accord-
ing to Tables II and V, ZrO supports type-A TPs on the HSL �

(little cogroup 4/m′mm). However, in Fig. 12, we can clearly
identify eight additional NLs attached to the TP: for each of
the two inequivalent mirror planes shown in Fig. 12(c) there
are two NL arcs and another two in the symmetry-related
mirror plane. Note, however, that all those NL arcs are red
(located in the lower gap) meaning that there are two red nexus
points at the TP. This is incompatible with type-B TPs where
the TP coincides with both a red and a blue nexus. We there-
fore conclude that the TP in ZrO is type A but fine tuned such
that the two red nexus points coincide with it. Interestingly,
such a configuration arises by fine tuning a single parameter,
as we discussed in Sec. IV B 1 above (see also the explicit
k · p model for the little group 4/m′mm in Appendix D 2 e).
The fine-tuned NL structure of the minimal k · p model for a
type-A TP on a HSL with little group 4/m′mm is shown in
the inset in Fig. 12(c). To verify that the NL structure is the
consequence of fine tuning, we include a perturbation in the
form of 5% uniaxial tensile strain, which preserves the little
cogroup of the � line. This splits the two nexus points and
the TP demonstrating that the stable TP is type A and that
we indeed have two separate nexus points with nnexus

a = 4 (cf.
Fig. 25 in the Appendix).

FIG. 12. Nodal-line structure of ZrO near the triple point (TP) at ETP = 2.0 eV lying on the � line with little cogroup 4/m′mm. The
organization of the panels is in one-to-one correspondence with Fig. 8 and the cutoff on the gap size was chosen to be 0.02 eV. The inset of
(c) shows the nodal-line (NL) structure of the minimal k · p model given in Appendix D 2 e with parameters tuned to qualitatively reproduce
the situation in ZrO. We observe that there are two red nexus points, each with four NL arcs, coinciding with the TP, such that sign(a3a4) = +1
in the k · p model in Eq. (D20) (in contrast to another TP in this compound, illustrated in Fig. 24). Therefore, there are in total eight red NLs
attached to the TP. This is accidental (see text and Fig. 25) and we therefore classify the TP despite the NL arcs as type A and consider the two
nexus points (separately) with nnexus

a = 4 and μ = 2.
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VI. CONCLUSION

In this work we have presented a classification of triple
nodal points (TPs) on high-symmetry lines (HSLs) in spinless
systems. In contrast to earlier works, which focused on the
classification of such TPs based on their dispersion in k as
linear vs quadratic [41–43], our classification is based on the
nodal-line (NL) structure in the vicinity of the TP. We specif-
ically distinguish TPs without additional NL arcs attached
to it (aside from the central NL along the HSL), which we
call type A (to maintain consistency with the classification
of TPs in strongly spin-orbit-coupled systems [29]), vs TPs
with additional NL arcs which are either attached linearly
(type Bl ) or quadratically (type Bq). We have shown that the
TP type is fully determined by the symmetry, i.e., the little
cogroup of the HSL and in some cases (specifically for HSLs
with sixfold rotational symmetry) the particular choice of
irreducible corepresentations of the bands involved in the TP.
To demonstrate the validity of our result, we have compiled a
table of materials hosting TPs with different symmetry and
of different types, and we used first-principles calculations
to determine the NL structure near these TPs. We observe
agreement between our the theoretical characterization of the
TPs and their realizations in our first-principles studies.

Curiously, we find (both in k · p models and in first-
principles calculations) that sometimes a collection of NL arcs
meet at a nexus point along the HSL in close vicinity of a
type-A TP. By fine tuning the model parameters it is possible
to accidentally collide the two, i.e., to accidentally attach NL
arcs to the otherwise type-A TP. To estimate the likelihood
of this scenario, we have determined the codimension for
realizing such fine-tuned models. We have shown that for
certain symmetries, this is achieved by tuning a single param-
eter; indeed, we have identified a concrete material (ZrO) in
which such an accidental fine tuning happens to be realized.
Additionally, while type-B TPs are convergence points of an
equal number of NL arcs in both adjacent energy gaps, the NL
arcs meeting at such fine-tuned type-A TPs can (for a suitable
choice of model parameters) all be realized in the same energy
gap.

It is worth noting that TPs of a remarkable variety of types
and codimensions are realizable in spinless band structures,
especially if contrasted to the spinful case. In this respect,
note that a HSL can only exhibit TPs if its little group exhibits
both 1D and 2D irreducible corepresentation (ICRs). While
for spinful systems there are only two magnetic point groups
(MPGs) that have both 1D and 2D ICRs and that arise as
little cogroups along HSLs [29], there are as many as 13 such
MPGs for spinless systems. This suggests that TPs might be
potentially much more common among weakly spin-orbit-
coupled materials. We anticipate that the revealed richness
of TPs in spinless band structures will motivate research of
their experimental realizations, associated transport features,
and topological characteristics. Regarding the latter, we note
that our parallel publication [46] reveals a universal higher-
order bulk-boundary correspondence of TP pairs, which is
associated with a filling anomaly [85] and fractional charges
at nanowire hinges.

We further find that nonsymmorphicity influences the de-
rived classification of TPs in spinless band structures in a

rather trivial way: it either renders TPs impossible [for HSLs
on the Brillouin zone (BZ) boundary when the projective
factor system is nontrivial] or keeps the characterization of
TPs unchanged (for HSLs inside BZ and when the projective
factor system belongs to the trivial equivalence class).

The presented characterization of TPs applies to spinless
representations in all space groups (magnetic or not, nonsym-
morphic or not), and as such provides that next essential piece
of information towards the growing catalog of symmetry-
protected and symmetry-enforced band nodes [52,86–89].
Nevertheless, it may be hard to find examples of electronic
material which are well described by spinless band structures.
Indeed, several recent works have argued that magnetic space
groups might not be ideally suited to capture band structure
features of certain magnetic materials with negligible spin-
orbit coupling, dubbed “altermagnets” by Refs. [90,91]. On
the other hand, spinless representations of magnetic space
groups could more readily be realized in classical metama-
terials such as discrete spring systems, elastic, acoustic and
phononic systems, as well as classical electric circuits. For
example, it is easily revealed that the displacement vector of
coupled two-dimensional pendula transforms according to a
2D spinless representation. Time-reversal symmetry can be
broken by applying a magnetic field perpendicular to the
plane of motion and charging the pendula electrically or by
placing a gyroscope with certain angular momentum in each
pendulum [92–94]. The symmetry of the resulting system is
then captured by a magnetic space group.

We conclude with one speculation that may constitute an
interesting research avenue for the near future. For the “alter-
magnets” mentioned above, “spin symmetry groups” [95,96]
(where “spin” describes a magnetic pattern, and should not
be confused for the double cover of orthogonal groups) were
proposed as the proper substitute of magnetic space groups.
The characterization of band degeneracies in spin symmetry
groups was systematically studied only recently [97], and it is
likely that many of them support HSLs with both 1D and 2D
ICRs, leading potentially to a further variety of TPs beyond
the ones classified here. More generally, the very recent work
[97] foreshadows that such altermagnets may admit novel
types of band structure nodes and topologies that are impos-
sible with magnetic space groups alone, and we anticipate
exciting future discoveries in this direction.

Supplementary data and code for this paper are available
in Ref. [63]; additionally, all the k · p expansions are made
available.
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APPENDIX A: ANTIUNITARY SYMMETRIES
AND COREPRESENTATIONS

In this Appendix we briefly review how to deal with groups
that contain antiunitary symmetries, in particular we discuss
the consequences on their representation theory. More details
can be found, e.g., in Ref. [64].

Given a unitary group G we consider the addition of an
arbitrary antiunitary symmetry element a, e.g., time reversal
or time reversal combined with another symmetry operation,
to the generators, such that we obtain the magnetic group

M = G ∪ aG. (A1)

All magnetic (point or space) groups can be written in this
form. Given that we know the irreducible representations D of
the unitary subgroup G < M we can construct the irreducible
corepresentations of M (see below).

By construction M contains two (left) cosets: 1G and aG,
where 1 is the identity, such that G is a subgroup of index
2. Elements of the coset 1G (aG) are unitary (antiunitary)
such that M has an equal number of unitary and antiunitary
elements. It follows that G is a normal subgroup of M and,
consequently, the cosets form a group, the quotient group
M/G ∼= {1, a} ∼= Z2 that obeys a−1 = a and a2 = 1. Accord-
ing to the natural group homomorphism, i.e., the canonical
projection of M onto M/G, this implies that bc ∈ G for b, c ∈
aG, and that a−1 ∈ aG.

1. Corepresentations

For a nonunitary group we study corepresentations D in-
stead of representations D. These satisfy the relations

D(g)D(h) = D(gh), (A2a)

D(g)D(b) = D(gb), (A2b)

D(b)D(g)
∗ = D(bg), (A2c)

D(b)D(c)
∗ = D(bc) (A2d)

for g, h ∈ G and b, c,∈ aG. Similarly, a change of basis by
some unitary U acts as follows:

D(g) 	→ UD(g)U −1, (A3a)

D(b) 	→ UD(b)(U −1)
∗
. (A3b)

We note that by (formally) considering the matrices D(g) for
g ∈ G and D(b)K , where K is complex conjugation, for b ∈
aG, they form a representation.

If the irreducible representations (IRs) D of G are known,
the irreducible corepresentations (ICRs) D of M can be deter-
mined as follows (see Ref. [64] for more details and proofs
of the statements summarized here). In general we need to
distinguish three cases based on the reality of D: (a) real, (b)
pseudoreal, and (c) complex. For our purposes only (a) and
(c) are relevant.

(a) Reality of D implies that there is a unitary matrix N
such that for all g ∈ G,

D(g) = ND∗(a−1ga)N−1, (A4a)

NN∗ = +D(a2). (A4b)

Then, D, defined by

D(g) = D(g), D(b) = ±D(ba−1)N (A5)

for all g ∈ G and b ∈ aG, is an ICR of M. The corepresenta-
tion with the + sign in Eq. (A5) is equivalent to the one with
the − sign.

(c) If D is a complex representation, then D, defined by

D(g) =
(

D(g) 0
0 D(g)

)
, D(b) =

(
0 D(ba)

D(ba−1) 0

)
(A6)

for all g ∈ G and b ∈ aG, is an ICR of M.
The representation matrices D(gi ) of a set of generators

of a unitary point group G can be obtained from the Bilbao
crystallographic server (BCS) using the REPRESENTATIONS PG
application [77]. This application also gives the reality of each
IR. Applying the above procedure, we determine the relevant
corepresentation matrices D(gi ). Note that, recently, a new
program COREPRESENTATIONS PG [66,67] has been added to
the BCS, which allows for direct extraction of the matrix
corepresentations of magnetic point groups.

2. Symmetry constraints on the Bloch Hamiltonian

Recall that the Bloch Hamiltonian H (k) close to a high-
symmetry point or line (e.g., obtained from a k · p expansion)
is constrained by the symmetries that leave that point or line
invariant. These symmetries form a subgroup of the space
group called the little groupGk, which generally contains both
unitary and antiunitary elements. The n-band Hamiltonian
transforms in a corepresentation D : Gk → U(n), such that

∀ g ∈ Gk
u : D(g)H (g−1k)D(g)−1 = H (k), (A7a)

∀ g ∈ Gk
au : D(g)H (g−1k)

∗
D(g)−1 = H (k), (A7b)

where Gk
u and Gk

au are the unitary subgroup of Gk and the
anitunitary complement, respectively. Due to the group struc-
ture of Gk, the only independent constraints are those due to
the generators of Gk. Furthermore, elements of the translation
subgroup T < Gk lead to trivial constraints and can thus be
neglected. If the space group is symmorphic, then Gk is a
semidirect product of the little cogroup of Gk (the group
formed by the point-group elements in Gk) and T, such that
it is sufficient to consider the constraints due to elements of
Gk. For nonsymmorphic space groups this is not as straight-
forward and is discussed in Appendix B.

Given such a set of constraints, a family of k · p Hamil-
tonians can be determined by expanding the full Bloch
Hamiltonian H (q) around the momentum vector k under
consideration up to some order n in k, and restricting to
terms that satisfy Eq. (A7). The space of all k · p Hamilto-
nians then is the tensor product of the space of Hermitian
matrices of the appropriate dimensions (given by the num-
ber of bands) and the space of polynomials in kx, ky, kz up
to the order n. Equation (A7) then constrains symmetry-
compatible k · p Hamiltonians H (k) to some subspace of it.
In simple cases this analysis can be performed by hand (see
Appendixes C 1 a–C 1 c), however, for groups with a large
number of generators, we use the Python package KDOTP-
SYMMETRY [98], which implements an algorithm for finding
this subspace as a span of a family of symmetry-allowed k · p
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Hamiltonians. For brevity we refer to such a parametrized
family as a k · p model.

APPENDIX B: EFFECT OF NONSYMMORPHICITY

According to Eq. (A7), the symmetry constraints of the
Hamiltonian near a high-symmetry point or line k are deter-
mined by the corepresentations (CRs) of the little group Gk,
but translations lead to trivial constraints. For symmorphic
space groups the irreducible corepresentations (ICRs) of Gk

are deduced from the ICRs of the little cogroup Gk, which
is isomorphic to Gk/T (and equals one of the magnetic point
groups) [64], allowing us to rewrite the constraints in terms
of CRs of Gk. On the other hand, if the space group is
nonsymmorphic, it becomes necessary to study the projective
corepresentations (PCRs) of Gk and the symmetry constraints
on k · p models are formulated in terms of those.

Despite this apparent additional level of difficulty, in this
Appendix we prove the following important result. For the
specific little groups that are relevant for triple points (TPs)
the resulting symmetry constraints are equivalent to those
given by an appropriate ordinary corepresentation of Gk cor-
responding to the relevant corepresentation of Gk.

We begin by briefly reviewing how to find all ICRs of a
little group in Appendix B 1 and by reviewing some properties
of PCRs in Appendix B 2. The review follows Ref. [64] but di-
rectly deals with magnetic groups, i.e., groups containing both
unitary and antiunitary elements [99,100]. In Appendix B 3
we then prove that any little group with at least one 1D ICR
has ICRs deduced from the PCRs of the corresponding little
cogroup with a factor system that lies in the trivial factor
system class (these notions are reviewed in Appendix B 2).
We discuss the consequences on the classification of TPs in
nonsymmorphic space groups in Appendix B 4 and argue that
the classification reduces to the one derived for symmorphic
space groups with an appropriate identification of ICRs.

1. Irreducible representations of the little group

Given a little group Gk (which generally is nonunitary) we
are interested in finding all ICRs. We start by factorizing Gk

into left cosets with respect to the translation group T:

Gk =
∑

α

{Sα|wα} ◦ T, (B1)

where {R|v} denotes the symmetry operation that acts on a
position vector as {R|v}r = Rr + v and R is either unitary
or antiunitary. We make the unitarity and antiunitarity more
explicit by using unprimed and primed indices for unitary
elements and antiunitary elements, respectively:

Gk =
∑

i

{Si|wi} ◦ T +
∑

i′
{Si′ |wi′ } ◦ T. (B2)

This decomposition is unique only up to changes of each wα

by arbitrary lattice vectors tα ∈ T, where the greek subscripts
encompass both unitary and antiunitary elements.

The coset representatives {Sα|wα} do not form a group, but
satisfy

{Sα|wα}{Sβ |wβ} = {1|tαβ}{Sγ |wγ }, (B3)

where 1 is the identity rotation, Sγ = SαSβ with wγ the corre-
sponding translation in the coset decomposition, and

tαβ = wα + Sαwβ − wγ . (B4)

Given a CR D of Gk, then according to Eq. (A2) and using

D({1|tαβ}) = e−ik·tαβ =: f (tαβ ) (B5)

it holds that

D({Si|wi})D({Sj |w j}) = f (ti j )D({Sl |wl}), (B6a)

D({Si|wi})D({Sj′ |w j′ }) = f (ti j′ )D({Sl ′ |wl ′ }), (B6b)

D({Si′ |wi′ })D({Sj |w j})
∗ = f (ti′ j )D({Sl ′ |wl ′ }), (B6c)

D({Si′ |wi′ })D({Sj′ |w j′ })
∗ = f (ti′ j′ )D({Sl |wl}), (B6d)

where Sl =SiSj , Sl ′ =SiSj′ , Sl ′ =Si′Sj , and Sl =Si′Sj′ , respectively.
One can show that D only depends on the coset in the decom-
position shown in Eq. (B1) and therefore is a matrix-valued
function on the quotient group Gk/T, which is isomorphic to
the little cogroup Gk. This implies that we can write

D({Sα|wα}) = �(Sα ) (B7)

and � forms a projective CR of Gk with factor system
μ(Sα, Sβ ) = f (tαβ ) (the definition of PCRs and some of their
properties are reviewed in Appendix B 2). Furthermore, all
ICRs of Gk can be found by finding the projective ICRs of
Gk and only keeping those with the correct factor system

μ(Sα, Sβ ) = e−ik·(wα+Sαwβ−wγ ). (B8)

2. Properties of projective corepresentations

Projective corepresentations of a finite-order group G with
unitary subgroup H and antiunitary complement G − H gen-
eralize the notion of (ordinary) representations. A PCR � is a
map from G to the group of invertible matrices that satisfies

�(h)�(g) = μ(h, g)�(hg), (B9a)

�(a)�(g)
∗ = μ(a, g)�(ag), (B9b)

for any g ∈ G, h ∈ H , and a ∈ G − H [in contrast, for ordi-
nary CRs one demands, μ(g, g′) = 1 for all g, g′ ∈ G]. The
map μ : G × G 	→ C forms a so-called factor system and
satisfies

μ(h, g)μ(hg, g′) = μ(h, gg′)μ(g, g′), (B10a)

μ(a, g)μ(ag, g′) = μ(a, gg′)μ(g, g′)∗, (B10b)

for all g, g′ ∈ G, h ∈ H , and a ∈ G − H .
As for ordinary CRs, similarity transformations [cf.

Eq. (A3)] map a PCR to an equivalent PCR. If the factor
system satisfies |μ(g, g′)| = 1 for all g, g′ ∈ G [which it does
in our use case, cf. Eq. (B8)], we can always find a transfor-
mation such that �(g) is unitary for all g ∈ G. Additionally,
given a PCR �,

�
′
(g) = C(g)�(g) (B11)
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for all g ∈ G and C : G → C \ {0} a function into nonzero
complex numbers, �

′
forms another projective representation

with factor system

ν(h, g) = C(h)C(g)

C(hg)
μ(h, g), (B12a)

ν(a, g) = C(a)C(g)∗

C(ag)
μ(a, g), (B12b)

for all g ∈ G, h ∈ H , and a ∈ G − H . The transformation in
Eq. (B11) defines equivalence classes of factor systems: two
factor systems μ and ν are equivalent if and only if there exists
a complex-valued function C such that Eq. (B12) is satisfied.

3. Little groups with 1D irreducible representations

We now prove the following theorem. Although we expect
the theorem to be known among the experts, we failed to find it
explicitly stated within the literature on representation theory
of (magnetic) space groups.

Theorem. Let Gk be a little group that has at least one 1D
ICR D1. Then, the ICRs of Gk are deduced from projective
ICRs of the corresponding little cogroup Gk with factor sys-
tem belonging to the trivial equivalence class.

Proof. The little group Gk has CRs deduced from PCRs of
Gk with factor system μ given by Eq. (B8). Because Gk has
a 1D ICR D1, there must be a corresponding 1D projective
ICR �1 of Gk with the same factor system μ. Consider the
equivalence transformation of factor systems induced by

C(g) = �1(g)−1. (B13)

Then, according to Eqs. (B9) and (B12), one easily verifies
that the transformed PCRs will have factor system

ν(g, g′) = μ(g, g′)−1μ(g, g′) = 1 (B14)

for all g, g′ ∈ G. This immediately implies that μ is a factor
system in the trivial equivalence class (but not necessarily
trivial itself). �

4. Consequences for triple-point classification

Now that we know the relationship between CRs of Gk and
PCRs of Gk we can rewrite Eq. (A7) in terms of elements of
Gk and the corresponding PCR �:

�(Si )H
(
S−1

i k
)
�(Si )

−1 = H (k), (B15a)

�(Si′ )H
(
S−1

i′ k
)∗

�(Si′ )
−1 = H (k), (B15b)

for Si, Si′ ∈ Gk, Si unitary, and Si′ antiunitary.
The little groups we study support stable TPs. Therefore,

they must have at least one 1D ICR, such that, according to
the theorem in Appendix B 3, � has factor system in the trivial
equivalence class. We therefore consider

�
′
(g) = eiφ(g)�(g), (B16)

where eiφ(g) = �−1
1 (g) plays the role of the equivalence

transformation C(g) by the 1D unitary projective ICR [cf.
Eq. (B13)], and �

′
is an ordinary CR of Gk (but not a CR of

Gk ). Then,

�
′
(Si )H

(
S−1

i k
)
�

′
(Si )

−1 = H (k), (B17a)

�
′
(Si′ )H

(
S−1

i′ k
)∗

�
′
(Si′ )

−1 = H (k) (B17b)

because the factors eiφ(Sα ) and e−iφ(Sα ) cancel. The key ob-
servation here is that the symmetry constraints on the k · p
expansion are unaffected by the equivalence transformation
in Eq. (B16).

By matching the ICRs of Gk to ordinary ICRs of Gk via
Eq. (B16), the set of constraints for any given CR D of Gk is
therefore reduced to a set of constraints for the corresponding
ordinary CRs D

′
of Gk. The classification of triple points in

nonsymmorphic space groups is therefore reduced to their
classification in symmorphic space groups by properly identi-
fying ICRs of the little group with ICRs of the little cogroup.
That identification of ICRs can be easily performed by looking
up ICRs of both groups, matching generators of Gk to those
of Gk = Gk/T and identifying the necessary phases φ(Sα ).

APPENDIX C: CLASSIFICATION IN THE ABSENCE OF
PT SYMMETRY AND PRESENCE OF MIRROR

SYMMETRY

In this Appendix we discuss some details of the derivation
of the classification of triple points (TPs) in the absence ofPT
symmetry and presence of mirror symmetry that have been
left out in Sec. III in the main text. In Appendix C 1 we derive
the minimal k · p models given in Eqs. (4), (14), and (17)
based on the symmetry constraints due to the corresponding
magnetic point groups (MPGs). In Appendix C 2 we comment
on the relation between the k · p expansions in symmetry
inequivalent sets of planes (cf. Fig. 3), deriving specifically
Eqs. (10)–(12). The derived models and constraints are used
in Sec. III B to deduce the type of the TP, the number of
nodal-line arcs attached to a nexus point, and the codimension
of the nexus point.

1. Derivation of k · p models

a. 4mm, 4̄′2′m, and 6mm

As discussed in Sec. III B 1, the MPGs 4mm, 4̄′2′m, and
6mm have mirror symmetries that appear in orthogonal pairs
(m, m⊥). With D the representation capturing the transfor-
mation of the three bands involved in the triple point, D =
ρ2D ⊕ ρ1D, a basis can be chosen such that the two mirror
symmetries have the following matrix representations:

D(m) =
⎛
⎝±p1

∓p1
∓p1

⎞
⎠,

D(m⊥) =
⎛
⎝±q1

∓q1
±t 1

⎞
⎠. (C1)

Note that in the main text Table III we have introduced a fourth
free sign “±r ,” which in the present discussion is already fixed
by a proper choice of basis as in Eq. (1).

We choose orthogonal coordinates (kx, kz ) in the mirror
plane of m, with kz along the rotation axis, i.e., the HSL
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containing the TP. Then, m constrains the Hamiltonian as
follows:

H (kx, kz ) = D(m)H (kx, kz )D(m)−1, (C2)

and implies that

H (kx, kz ) =
⎛
⎝ε1 0 0

0 ε2 f
0 f ∗ ε3

⎞
⎠ (C3)

with εi being real-valued functions and f a complex-valued
function of kx and kz.

Note that, as emphasized in the main text, for groups with-
out PT symmetry we derive the low-order expansion only in
kx, while keeping the full dependence on kz. To that end, first
note that m⊥ constrains the Hamiltonian by

H (kx, kz ) = D(m⊥)H (−kx, kz )D(m⊥)−1. (C4)

This implies that εi are even in kx, and that

f (kx, kz ) = (∓q1)(±t 1) f (−kx, kz ), (C5)

i.e., f is even (odd) in kx if the product of the signs of the C2

characters of ρ2D and ρ1D is positive (negative) (cf. Table III).
Let us denote the sign of that number by

s = −(±q1)(±t 1). (C6)

Finally, the (antiunitary) rotational symmetry (C4, C4PT ,
and C6 for the three discussed MPGs, respectively) leads to
the following additional constraints: ε1(0, kz ) = ε2(0, kz ) and
f (0, kz ) = 0.

Assuming there is a TP at kz = 0 at energy E = 0, we have
εi(0, 0) = 0 for i = 1, 2, 3 and

ε̃1(kx, kz ) = ãkz + b̃k2
x , (C7a)

ε̃2(kx, kz ) = ãkz + c̃k2
x , (C7b)

ε̃3(kx, kz ) = d̃kz + ẽk2
x , (C7c)

f (kx, kz ) = Ak
3+s

2
x , (C7d)

with ã, b̃, c̃, d̃, ẽ real-valued functions and A a complex-
valued function of kz. The degeneracies of the spectrum are
clearly independent of constant energy shifts (i.e., terms in the
Hamiltonian that are proportional to the identity matrix), such
that we can subtract 1

2 (ε̃1 + ε̃2)1 and arrive at the following
Hamiltonian:

H (kx, kz ) =

⎛
⎜⎝

ak2
x 0 0

0 −ak2
x Ak

3+s
2

x

0 A∗k
3+s

2
x bkz + ck2

x

⎞
⎟⎠ (C8)

with a, b, c real-valued functions and A a complex-valued
function of kz.

b. 6̄′m2′

The MPG 6̄′m2′ has three vertical mirror planes m, which
are related by C3 symmetry, and another set of symmetry-
related pseudomirror symmetry m⊥PT , where m⊥ is the
mirror perpendicular to m. Therefore, we proceed analogously
to Appendix C 1 a, with the key difference that the analog to
Eq. (C4) involves the antiunitary symmetry m⊥PT instead of
m⊥. Therefore, in the mirror planes of m, the Hamiltonian

takes the form given in Eq. (C3) and is subjected to the
constraint [cf. Eq. (A7b)]

H (kx, kz ) = D(m⊥PT )H (−kx, kz )∗D(m⊥PT )−1. (C9)

We find that in an appropriate choice of basis [66,67]

D(m⊥PT ) = ρ2D ⊕ ρ1D =
⎛
⎝−i

−i
±1

⎞
⎠, (C10)

where the upper (lower) sign corresponds to choosing repre-
sentation ρ1D = A1 (ρ1D = A2).

The above constraint implies that εi are even functions of
kx, and that

f (kx, kz ) = ∓i f (−kx, kz )∗, (C11)

further implying that

f (kx, kz ) = d (1 ∓ i)kx (C12)

for d ∈ R. By repeating the final steps of Appendix C 1 a, we
arrive at

H (kx, kz ) =
⎛
⎝ak2

x 0 0
0 −ak2

x d (1 ∓ i)kx

0 d (1 ± i)kx bkz + ck2
x

⎞
⎠ (C13)

with a, b, c, d being real-valued functions of kz. Note that the
final result in Eq. (C13) corresponds exactly to Eq. (C8) with
A = d (1 ∓ i) and s = −1.

c. 3m

Finally, we discuss the remaining MPG 3m, which has
threefold rotational symmetry with three vertical mirrors that
do not come in pairs with orthogonal mirror planes. Again, we
choose coordinates (kx, kz ) in the mirror plane under consider-
ation (the three mirror planes are equivalent due to rotational
symmetry), then the Hamiltonian takes again the form given
in Eq. (C3). In this case, however, there are no constraints on
εi and f to be even or odd functions of kx, such that to leading
order in kx,

H (kx, kz ) =
⎛
⎝akx 0 0

0 −akx Akx

0 A∗kx bkz + ckx

⎞
⎠, (C14)

with a, b, c real-valued functions and A a complex-valued
function of kz.

2. Relationship between independent sets of mirror planes

The functional form of the k · p models in Eq. (C8) has
been derived with rather general assumptions, such that it
applies to arbitrary mirror planes containing the rotation axis.
In this respect, note that point groups 4mm and 6mm each have
two sets of symmetry-related mirror planes (cf. differently
colored planes in Fig. 3). Within each set, the mirror planes
are related to each other by rotational symmetry, such that the
parameters a, b, c, and A are identical. In contrast, momenta
in the two sets are not related by symmetry; therefore, the
functions a, b, c, A and a′, b′, c′, A′ that encode the Hamilto-
nian in the two planes, respectively, are a priori not related to
each other.
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Nevertheless, a relationship between the two sets of func-
tions can be established. This is achieved by considering the
full 3D k · p model, i.e., one not restricted to mirror planes,
but which reduces to the functional form in Eq. (C8) (with
suitable choice of functions a, b, c, A) for both sets of mirror
planes. In this section, we clarify how to relate the parameters
of the k · p model in the independent sets of mirror planes of
point groups 4mm and 6mm without determining the full 3D
k · p model.

We consider a point group G with two generators: an n-
fold rotation Cn (for simplicity, n is assumed even; in our
application n = 4, 6) and a vertical mirror m0 (such that the
mirror plane contains the axis of rotation). The elements of
the group correspond to powers of the n-fold rotation, Cl

n for
l ∈ {0, 1, . . . , n − 1}, and two types of mirror symmetries

ml = Cl
nm0C

−l
n , (C15a)

m′
l = Cl

nm′
0C

−l
n , (C15b)

where m′
0 = Cnm0 and l ∈ {0, 1, . . . , n/2 − 1}. Note that, ad-

ditionally, all mirrors m satisfy

m = Cl
nmCl

n (C16)

for any l . The partitioning in Eq. (C15) corresponds to two
conjugacy classes of mirrors:

c(m0) = {m0, m1, . . . , mn/2−1}, (C17a)

c(m′
0) = {m′

0, m′
1, . . . , m′

n/2−1}. (C17b)

In contrast, rotations with l /∈ {0, n/2} appear in two-element
conjugacy classes {

Cl
n,C−l

n

}
(C18)

(with mCl
nm−1 = C−l

n ) whereas rotations with l ∈ {0, n/2}
constitute single-element conjugacy classes. Furthermore,
each mirror m is accompanied by a perpendicular mirror m⊥
(for 4mm both are in the same conjugacy class, while for 6mm
they are in different conjugacy classes).

The Hamiltonian satisfies the constraint in Eq. (3) for both
generators of the point group, i.e.,

H (k) = D(Cn)H
(
C−1

n k
)
D(Cn)−1, (C19a)

H (k) = D(m)H (m−1k)D(m)−1. (C19b)

Restricting to the plane M in momentum space, which we
define2 as the set of k points invariant under m, Eq. (C19)
leads to the two constraints

H (k) = D(m)H (k)D(m)−1, (C20a)

H (k) = D(m⊥)H (m−1
⊥ k)D(m⊥)−1, (C20b)

for k ∈ M. We recognize Eq. (C20) as an incarnation of
Eqs. (C2) and (C4), which we employed in the derivation of
the k · p Hamiltonians in M (cf. Appendix C 1 a).

We now formally perform the k · p analysis based on
Eq. (C20). To do that, we decompose in-plane momentum
vectors into orthogonal coordinates k = (kM, kz ) (with kz, as

2Note that the set M is called m plane in the main text; however,
the mathematically involved discussion that follows requires a more
compact notation (only adopted in the present Appendix C 2).

usual, along the rotation axis), and sometimes utilize the unit
vectors eM and ez in the two directions, respectively. Next,
note that any k · p Hamiltonian is encoded by a collection of
parameters ai (which in our case are taken to be functions of
kz since the kz dependence is not constrained by elements of
G; for brevity we call them coefficients) that multiply matrix-
valued polynomial functions hi(kM ) subject to Eq. (C20) [for
brevity we call hi(kM ) terms in the k · p model]. Finally, we
truncate the expansion such that the polynomials have order
of at most N in kM . Then, for k ∈ M, and collecting the
parameters ai in the vector a, we write

H (N )
M [a](k) =

∑
i

ai(kz )hi(kM ). (C21)

To summarize, the multiple decorations of the Hamiltonian
appearing on the left-hand side of Eq. (C21) remind us that
H (N )

M [a] is a parametrized (parameters a) and truncated (order-
N) expansion of the HamiltonianH (k) restricted to the plane
M. Note that Eq. (C21) is incarnated, for example, in Eq. (4),
when setting a = (a, b, c, A).

It is important to keep in mind that an equation with the
same functional form as Eq. (C21) applies to any of the n mir-
ror planes [because for each such a plane one can choose a pair
of orthogonal mirror symmetries characterized by constraints
analogous to Eq. (C20)]; in particular, the functional form of
hi can be considered to be independent of M (while both its
argument kM as well as the basis in which the resulting H (N )

M
is given depend on the mirror plane under consideration). To
simplify our subsequent analysis of the symmetry constraints,
we find it convenient to further adopt the notation

hi
M (k) := hi(kM ) = hi(k · eM ) (C22)

(one should keep in mind here that hi
M depends nontrivially

only on the kM component of k). Generically, the parameters
a are different in different mirror planes. However, due to
rotational symmetry, they are constrained to be identical in all
mirror planes in the same conjugacy class. We are therefore
left with two sets of parameters a and a′ for the mirror planes
M0 and M ′

0, respectively. The goal of this Appendix is to relate
a and a′.

To motivate the subsequent technical analysis, let us sum-
marize here the steps that have to be taken to arrive at the
sought relation (working out these steps fills the remainder of
this Appendix).

(1) Given any term hi
M (k) that appears in the k · p ex-

pansion of the Hamiltonian restricted to a mirror plane, i.e.,
satisfies Eq. (C20), we show in Eqs. (C23) and (C25) to (C28)
that by symmetrizing hi

M (k) we obtain a term ĥi
c(m)(k) that

appears in the k · p expansion of the full Hamiltonian, i.e.,
satisfies Eq. (C19).

As indicated by the notation, the terms in the full Hamil-
tonian produced by such a symmetrization only cover one
conjugacy class of mirror planes; some terms that would
appear in a k · p expansion of the full Hamiltonian and are
relevant in its restriction to mirror planes from the other con-
jugacy class are missing.

(2) We next turn to relating the two conjugacy classes.
We observe that the point groups and representations under
consideration satisfy a useful property that relates the repre-
sentations of symmetry-unrelated mirror symmetries to each
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other [cf. Eq. (C29a)], giving us the previously unknown
transformation U between the bases in which hi

M0
(k) and

hi
M ′

0
(k) are expressed in terms of the same functions hi [cf.

Eq. (C31)].
(3) Based on the symmetrized terms ĥi

c(m0 )(k) and

ĥi
c(m′

0 )(k), we next define the reconstructed k · p model

Ĥ (N )[B](k) as the k · p model obtained from all those
symmetrized terms, i.e., from both c(m0) and c(m′

0) [cf.
Eq. (C33)]. The basis transformation U then allows us to write
all those terms using the matrix-valued polynomial functions
hi [cf. Eq. (C34)].

(4) Finally, we evaluate Ĥ (N )[B](k) in the planes M0 and
M ′

0 and compare the result to H (N )
M0

[a](k) and H (N )
M ′

0
[a′](k),

respectively. This allows use to express a and a′ in terms of B
and therefore determine if and how a and a′ are related.

To start the analysis of step 1 in the above list, note that
each term hi

M (k) in H (N )
M [a](k) satisfies Eq. (C20) and orig-

inates from a term in the full k · p Hamiltonian H (N )(k) that
satisfies Eq. (C19). Let further nM = Cn/2

n eM be the normal
of the mirror plane M corresponding to the mirror symmetry
m (here m is chosen to be one of the representatives of the
conjugacy classes, i.e., either m0 or m′

0). In order to find
symmetry-compatible terms appearing in the 3D expansion
H (N )(k), we define for any k ∈ R3 a symmetrized matrix-
valued polynomial function

ĥi
c(m)(k) =

n−1∑
l=0

D(Cn)l hi
M

(
C−l

n

(
k|Ml

))
D(Cn)−l , (C23)

where Ml = Cl
nM and

k|M = k − (nM · k)nM . (C24)

Note that

C−l
n

(
k|Ml

) = C−l
n

[
k − (

nMl · k
)
nMl

]
= C−l

n k − [(
C−l

n nMl

) · (
C−l

n k
)](

C−l
n nMl

)
= C−l

n k − [
nM · (

C−l
n k

)]
nM

= (
C−l

n k
)∣∣

M, (C25)

where we utilized that n · k = (Sn) · (Sk) for any orthogonal
symmetry S. The final line of Eq. (C25) reveals that the argu-
ment of hi

M in Eq. (C23) lies in M as it is supposed to.
We proceed to show that ĥi

c(m)(k) defined by Eq. (C23)
satisfies Eq. (C19). First, by substituting l = p + 1 and using
C0

n = Cn
n (both corresponding to the identity element), we

easily find that

ĥi
c(m)(k) =

n∑
l=1

D(Cn)l hi
M

((
C−l

n k
)∣∣

M

)
D(Cn)−l

=
n−1∑
p=0

D(Cn)p+1hi
M

((
C−(p+1)

n k
)∣∣

M

)
D(Cn)−(p+1)

= D(Cn)ĥi
c(m)

(
C−1

n k
)
D(Cn)−1, (C26)

which reveals that ĥi
c(m)(k) obeys Eq. (C19a). Furthermore,

for any mirror symmetry m̃, it holds that

m̃−1( k|M ) = m̃−1[k − (nM · k)nM]

= m̃−1k − [(m̃−1nM ) · (m̃−1k)](m̃−1nM )

= (m̃−1k)|m̃M, (C27)

where we again used that n · k = (Sn) · (Sk), and addition-
ally that mirrors are their own inverses, m̃ = m̃−1. Using
Eqs. (C16), (C23), (C25), and (C20a) and C−l

n = Cn−l
n , we find

ĥi
c(m)(k)

(C25)=
n−1∑
l=0

D(Cn)l hi
M

((
C−l

n k
)∣∣

M

)
D(Cn)−l

(C20a)=
n∑

l=1

D
(
Cl

nm
)
hi

M

(
m−1(C−l

n k
)∣∣

M

)
D

(
m−1C−l

n

)

(C16)=
n∑

l=1

D
(
mC−l

n

)
hi

M

((
Cl

nm−1k
)∣∣

M

)
D

(
Cl

nm−1
)

=
n∑

p=1

D
(
mCp

n

)
hi

M

((
C−p

n m−1k
)∣∣

M

)
D

(
C−p

n m−1
)

= D(m)ĥi
c(m)(m

−1k)D(m)−1, (C28)

where in the second line we further used hat m acts trivially
inside M (and therefore its addition to the argument of hi

M does
not alter the expression), and in the fourth line we substituted
p = n − l . The final line above confirms that ĥi

c(m)(k) also

respects Eq. (C19b). Therefore, we have shown that ĥi
c(m)(k) is

a term that appears in the 3D expansionH (N )(k) (even though
it does not generally reduce to hi

M (k) in the mirror plane M).
Up to here, we have treated each of the two indepen-

dent sets of symmetry-related mirror planes independently,
reflected in the use of the generic mirror m. We now turn to
step 2 of the above list. Looking up [65] representations under
consideration (representations that stabilize TPs) for the two
point groups 4mm and 6mm, we observe that the following
property is always satisfied:

D(m′
0) = eiφUD(m0)U †, (C29a)

D[(m′
0)⊥] = eiφ⊥UD[(m0)⊥]U †, (C29b)

for some φ, φ⊥ ∈ R and U ∈ U(3), with the particular values
of φ, φ⊥, and U depending on the choice of ICRs D = ρ2D ⊕
ρ1D [63]. If we rotate the band basis by U † (denoted by a tilde
over the representation symbol), then

D̃(m′
0) = eiφD(m0), (C30a)

D̃[(m′
0)⊥] = eiφ⊥D[(m0)⊥]. (C30b)

Equation (C30) implies that the constraints for the corre-
sponding mirror plane M ′

0 in the rotated basis are identical
to Eq. (C20) (which captures constraints for plane M0 in the
original basis). Thus, any term h̃i

M ′
0
(k) in the k · p model for

M ′
0 in that basis is given by precisely the same matrix-valued

polynomial function hi (with the argument kM0 replaced by
kM ′

0
) as the corresponding term hi

M0
(k) in k · p model for M0

in the original basis:

h̃i
M ′

0
(k) = U †hi

M ′
0
(k)U = hi

(
kM ′

0

) = hi
M0

(C2nk), (C31)
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where in indicating the momentum arguments we used that
the (symmetry-inequivalent) planes M0 and M ′

0 (and the cor-
responding in-plane components kM0 and kM ′

0
) are related by a

C2n rotation (not an element of G). Note that in the resulting
k · p Hamiltonian these terms appear with different coefficient
functions a′ compared to the ones that appear in the expansion
for M0:

H̃ (N )
M ′

0
[a′] =

∑
i

a′
i(kz )hi

(
kM ′

0

)
. (C32)

Next, in step 3, we define the reconstructed k · p model as
the family of Hamiltonians with symmetrized terms ĥi

c(m0 )(k)

and ĥi
c(m′

0 )(k) parametrized by the kz-dependent components
of some vector B. Since there are twice as many terms, B
has twice as many components as a making it convenient to
introduce vectors b and b′, B = (b, b′), such that the terms
originating from c(m0) and c(m′

0) appear with components of
b and b′, respectively, as coefficients:

Ĥ (N )[B](k) =
∑

i

(
bi(kz )ĥi

c(m0 )(k) + b′
i(kz )ĥi

c(m′
0 )(k)

)
.

(C33)
Substituting Eq. (C23), and comparing to Eq. (D3) we can
rewrite the terms as symmetrizations ofH (N )

M0
[b] andH (N )

M ′
0

[b′]:

Ĥ (N )[B](k) =
n−1∑
l=0

D(Cn)l
{
H (N )

M0
[b]

((
C−l

n k
)∣∣

M0

)
+ H (N )

M ′
0

[b′]
((

C−l
n k

)∣∣
M ′

0

)}
D(Cn)−l

=
n−1∑
l=0

D(Cn)l
{
H (N )

M0
[b]

((
C−l

n k
)∣∣

M0

)
+ UH (N )

M0
[b′]

((
C2nC

−l
n k

)∣∣
M0

)
U †}D(Cn)−l ,

(C34)

where for the last equality we applied Eq. (C31) to the terms
inH (N )

M ′
0

[b′].

The family of Hamiltonians Ĥ (N )[B] given by Eq. (C34) is
generally both incomplete (as a k · p in the full 3D momentum
space), because potential terms that vanish in all mirror planes
are missed out, and overparametrized, because some terms
originating from c(m0) and c(m′

0) are linearly dependent (e.g.,
the constant terms). In step 4, we evaluate Ĥ (N )[B] in the
mirror planes M0 and M ′

0, where the incompleteness does
not affect the result, and compare that result to H (N )

M0
[a](k)

and H (N )
M ′

0
[a′](k), respectively. Let kM = keM + kzez ∈ M for

M ∈ {M0, M ′
0}, then

Ĥ (N )[B]
(
kM0

) = H (N )
M0

[a]
(
kM0

)
=

∑
i

ai(kz )hi(k), (C35a)

U †Ĥ (N )[B]
(
kM ′

0

)
U = H̃ (N )

M ′
0

[a′]
(
kM ′

0

)
=

∑
i

a′
i(kz )hi(k). (C35b)

Recognizing the terms hi(k) on the both sides of the above two
equations and comparing their respective coefficients allows

us to express a and a′ in terms of B. Subsequently, we can
simply read off the relationship between a and a′ [cf. Eqs. (10)
to (12) in the main text] from their expressions in terms of B.
This comparison of coefficients automatically takes care of
the overparametrization problem mentioned in the beginning
of the present paragraph.

Performing this analysis for 4mm we find that the co-
efficients in Eq. (C8) for (k, 0) and k( 1√

2
, 1√

2
) (dashed

parameters) are related as follows: a and a′ are independent,
b′ = b, c′ = c, and A′ = ∓pA [cf. Eq. (11)] with the sign
defined in Eq. (C1). For 6mm we compare the coefficients for
the planes defined by (k, 0) and k(

√
3

2 , 1
2 ) (dashed parameters)

and find, for type-A TPs, that a′ = a, b′ = b, c′ = c, and
A′ = (∓p)(±q)A [cf. Eq. (12)] with the signs again defined
in Eq. (C1). Note that for type-A TPs, ∓t = ∓q. For type-B
TPs, on the other hand, we find that a′ = −a, b′ = b, c′ = c,
and A′ = −A [cf. Eq. (10)]. Detailed derivations of the above
three results are provided in a supplementary Mathematica
notebook [63].

APPENDIX D: CLASSIFICATION IN THE PRESENCE
OF PT SYMMETRY

In this Appendix we provide several examples illustrating
the rather abstract discussion of the derivation of the classi-
fication of triple points in the presence of PT symmetry in
Sec. IV. We first work through one example for a deriva-
tion of the minimal k · p model in Appendix D 1. Then, in
Appendix D 2, we present a number of examples illustrat-
ing different aspects of the derivation of the nodal-line (NL)
structure, in particular the type of the triple point and the
equations for the NL arcs. Full derivations are given in [63].

1. Minimal k · p models

In Appendix A we have described how to obtain k · p mod-
els for magnetic point groups (MPGs) based on the knowledge
of only the irreducible representations of the unitary subgroup.
Below, we work through an example and in [101] we provide
a small database and Python scripts that output corepresen-
tations and k · p models for the MPGs with PT symmetry
relevant to our studies.

As an example, we consider the MPG 6/m′mm and rep-
resentation (E1; A1). The representation matrices of the two
generators of the unitary subgroup 6mm of 6/m′mm can be
easily obtained from the Bilbao crystallographic server (BCS)
(first two rows of Table VI). We determine the corresponding
corepresentation (CR) of the nonunitary group 6/m′mm =
6mm ∪ (PT )6mm. Both irreducible representations (IRs) of
the unitary subgroup 6mm are real, which we look up on the
BCS; therefore, according to Eq. (A4) one can find for each
IR a unitary matrix N such that

�(g) = N�∗(g)N−1, NN∗ = 1, (D1)

where we used that PT commutes with all g ∈ 6mm and
(PT )2 = 1. For the 1D IR A1 a solution is NA1 = 1 and for
E1 NE1 = σx. [This can be verified using the lower (upper)
diagonal 1 × 1 (2 × 2) block in the corepresentation matrices
of the generators given in Table VI, which correspond to the
representation matrices of the irreducible representation A1

085128-23



PATRICK M. LENGGENHAGER et al. PHYSICAL REVIEW B 106, 085128 (2022)

TABLE VI. Generators of the magnetic point group 6/m′mm, in-
cluding their action on position as well as the matrix corepresentation
(E1; A1).

Generator Action on position Matrix corepresentation

C+
6

⎛
⎝ 1

2 −
√

3
2 0√

3
2

1
2 0

0 0 1

⎞
⎠

⎛
⎝eiπ/3 0 0

0 e−iπ/3 0
0 0 1

⎞
⎠

σd3

⎛
⎝0 1 0

1 0 0
0 0 −1

⎞
⎠

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠

PT

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠

(E1).] The resulting CR according to Eq. (A5) is given in
Table VI.

Since (PT )2 = 1, we can find a change of basis such that
D(PT ) = 1 [59], i.e., for the 2D irreducible corepresentation
(ICR) (corresponding to the upper 2 × 2 block of the matrices
given in Table VI)

U

(
0 1
1 0

)
U � = 1, U = 1√

2

(
1 0
−i i

)
. (D2)

The resulting CR matrices UD(g)U † for g = C+
6 , σd3 and

UD(PT )U � are provided as input to the Python package
KDOTP-SYMMETRY. That returns a set of 11 Bloch matrices
Hi(k) with entries that are polynomials in kx, ky, kz.

Not all of those terms are actually relevant for our pur-
poses. Diagonal matrices that are k independent and those that
are proportional to the identity encode only constant shifts in
energy and can thus be dropped. Therefore, we make all ma-
trices traceless and then keep only an independent set of those.
Finally, we are interested in the behavior near the expansion
point, such that leading-order matrices are sufficient.

After this procedure we end up with four matrices

H1(k) =
⎛
⎝ kxky

1
2

(
k2

y − k2
x

)
0

1
2

(
k2

y − k2
x

) −kxky 0
0 0 0

⎞
⎠,

H2(k) =
⎛
⎝kz 0 0

0 kz 0
0 0 −2kz

⎞
⎠,

H3(k) =
⎛
⎝k2

x + k2
y 0 0

0 k2
x + k2

y 0
0 0 −2

(
k2

x + k2
y

)
⎞
⎠,

H4(k) =
⎛
⎝ 0 0 −kx + ky

0 0 −kx − ky

−kx + ky −kx − ky 0

⎞
⎠ (D3a)

and the full k · p model can be written as

Ha(k) =
4∑

i=1

aiHi(k), (D3b)

where a is the vector with components ai. The terms H2,3

contribute directly to the three eigenenergies, while H1 cou-
ples the two bands transforming in the same 2D ICR and H4

couples the 2D ICR to the 1D ICR.

2. Nodal-line structure

Here, we illustrate the derivation of the classification of
triple points (TPs) for magnetic point groups with PT sym-
metry, i.e., the MPGs 3̄′, 4/m′, 6/m′, 3̄′m, 4/m′mm, and
6/m′mm, by presenting a number of representative example
calculations. The full calculations for all MPGs are provided
in a Mathematica notebook [63].

We first utilize the MPG 6/m′mm as an example. The MPG
6/m′mm has two 2D ICRs E1, E2 and four 1D ICRs A1,
A2, B1, B2. We can build eight different combinations of one
2D and one 1D ICR, which fall into two equivalence classes
[cf. Eq. (22) and Table IV]. We demonstrate this equivalence
for the ICR combinations (E2; A1) and (E2; A2) in Ap-
pendix D 2 a, before making in Appendix D 2 b a short detour
to discuss the winding number around the central NL formed
by the 2D ICR E1. Then, in Appendix D 2 c, we apply the
method we developed to determine the leading-order terms in
the discriminant to the ICR combination (E1; A1) of 6/m′mm.
This method only leads to a simplification if the TP turns out
to be type A. Therefore, we discuss the more complicated
analysis of the discriminant of models hosting type-B TPs in
Appendix D 2 d using (E1; B1) of 6/m′mm as an example.

In the subsequent subsections we show some representative
calculations for MPGs without sixfold rotational symmetry.
First, in Appendix D 2 e, we discuss the MPG 4/m′mm giving
rise to a type-A TP, while highlighting that although there
are no additional nodal lines attached directly to the TP, there
might be a nexus of NL arcs a short distance away from the TP.
Finally, we consider the MPG 3̄′ to illustrate the reduction of
the characteristic polynomial of models without mirror sym-
metry to the characteristic polynomial of the corresponding
models with mirror symmetry in Appendix D 2 f.

a. Equivalence classes of Hamiltonians

Let us briefly illustrate the equivalence of certain ICR
combinations as discussed in Sec. IV using (E2; A1) and
(E2; A2) of 6/m′mm as an example. The characteristic poly-
nomials χ [H (i)

a (k)](E ) of the k · p Hamiltonians for the ICR
combinations (E2; Ai ) are [in polar coordinates (kx, ky) =
k( cos(θ ), sin(θ )) and with energy E the polynomial variable]

χ
[
H (1)

a (k, θ, kz )
]
(E ) = 1

8

[ − 8(a3k2 + a2kz )2(2a3k2 + 2a2kz − 3E ) − a2
4k4(a1k2 sin(6θ ) + 2a3k2 + 2a2kz − 2E )

+ 2a2
1k4(2a3k2 + 2a2kz + E ) − 8E3

]
,

(D4)

χ
[
H (2)

a (k, θ, kz )
]
(E ) = 1

8

[ − 8(a3k2 + a2kz )2(2a3k2 + 2a2kz − 3E ) − 4a2
4k4(−a1k2 sin(6θ ) + 2a3k2 + 2a2kz − 2E )

+ 2a2
1k4(2a3k2 + 2a2kz + E ) − 8E3

]
.

(D5)
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We observe that

χ

[
H (1)

ã

(
k, θ + π

6
, kz

)]
(E ) = χ

[
H (2)

a (k, θ, kz )
]
(E ) (D6)

with ã4 = 2a4 and ãi = ai for i �= 4. An analysis along these
lines of reasoning reveals that all combinations of 2D+1D
ICR fall into two distinct equivalence classes in the presence
of sixfold rotational symmetry, and to a single equivalence
class for all other MPGs.

b. Winding number (ICR E1 of 6/m′mm)

We first construct a k · p model for the 2D ICR E1 of
6/m′mm as described in Appendix D 1:

H (k) = [
a0 + a2

(
k2

x + k2
y

)]
1 + a1

(−2kxky k2
x − k2

y

k2
x − k2

y 2kxky

)
.

(D7)
The resulting model can be written in terms of Pauli matrices
as indicated in Eq. (29), while dropping the topologically
unimportant term proportional to the identity; then

ha(kx, ky) = a1

(
k2

x − k2
y

−2kxky

)
. (D8)

The winding number defined in Eq. (30) then becomes

w2D = 1

2π

∮
C

dk ·
[

1

k2
x + k2

y

(
2ky

−2kx

)]
= −2. (D9)

c. Analysis for type-A triple points (6/m′mm class I)

To study the NL structure near a TP, we need three-band
models. For equivalence class I of 6/m′mm, we use the ICR
combination (E1; A1), for which the k · p model is given in
Eq. (D3). The corresponding characteristic polynomial in en-
ergy E is (in cylindrical coordinates; θ drops out)

χ [Ha(k, θ, kz )](E )

= − 1
4 [2(E − a2kz ) − (a1 + 2a3)k2]

× {
(2a3k2 + 2a2kz + E )

× [(a1 − 2a3)k2 + 2(E − a2kz )] − 4a2
4k2

}
. (D10)

Noting that the discriminant of a third-order polynomial is
defined as

�

[
3∑

n=0

bnxn

]
= b2

1b2
2 − 4b3

1b3 − 4b0b3
2

− 27b2
0b2

3 + 18b0b1b2b3, (D11)

we find (by fully utilizing Mathematica) the discriminant of
the characteristic polynomial to be

�a,θ (k, kz ) = 1
16 k4

[
a1(a1 + 6a3)k2 + 6a1a2kz − 4a2

4

]2

× {
[(a1 − 6a3)k2 − 6a2kz]

2 + 32a2
4k2

}
.

(D12)

We next determine the leading-order terms in the dis-
criminant following the method outlined in Eqs. (24) and
(28) in the main text. The set M (black dots) of all
monomials appearing in �a,θ with nonvanishing coefficients
together with the leading terms L(M ) (red dots) is shown in

0 2 4 6 8

0

1

2

3

4

FIG. 13. Construction of the leading terms contributing to the
discriminant of 6/m′mm class I given the Hamiltonian in Eq. (D12)
(red line). The black dots denote elements of the set M as defined in
Eq. (26), and the red dots are elements of L(M ) as defined in Eq. (28).

Fig. 13. There are only two leading terms, such that we can
approximate

�a,θ (k, kz ) ≈ 4a4
4k4

(
8a2

4k2 + 9a2
2k2

z

)
(D13)

near the TP. From the obtained leading-order expansion it is
apparent that there are no real roots apart from k = 0 (the
central NL), and we conclude that the TP is type A.

d. Analysis for type-B triple points (6/m′mm class II)

For class II the algebra is much more involved, mainly
because none of the terms in the discriminant of the charac-
teristic polynomial are subleading. Again, we first determine
the relevant k · p model for the corepresentation (E1; B1). The
only difference to Eq. (D3) is the replacement of H4(k) by

H (II)
4 (k) =

⎛
⎝ 0 0 kxky

0 0 1
2

(
k2

x − k2
y

)
kxky

1
2

(
k2

x − k2
y

)
0

⎞
⎠. (D14)

We omit the explicit expressions for the characteristic poly-
nomial and for the discriminant �a,θ (k, kz ) here; they can be
found in [63].

Similar to Eq. (D12), the discriminant of the characteristic
polynomial is a fourth-order polynomial in kz and takes the
form

�a,θ (k, kz ) =
4∑

β=0

bβ (a, k, θ )kβ
z . (D15)

The nature of its real roots, i.e., the number of distinct real
roots and their multiplicities, is determined [74] by the fol-
lowing five quantities (suppressing the dependence on a, k,
and θ ): the discriminant �̄ of the discriminant �a,θ (k, kz ) seen
as a polynomial in kz,

P = 8b2b4 − 3b2
3, (D16a)

R = b3
3 − 4b2b4b3 + 8b1b2

4, (D16b)

�̄0 = b2
2 − 3b1b3 + 12b0b4, (D16c)

D = −3b4
3 + 16b2b4b2

3 + 64b0b3
4 − 16

(
b2

2 + b1b3
)
b2

4.

(D16d)
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The following cases are possible:
(1) a single real root of multiplicity 2 if �̄=0 ∧ {D>0 ∨

[P>0 ∧ (D �=0 ∨ R �=0)]},
(2) a single real root of multiplicity 4 if �̄=0 ∧ D=0 ∧

�̄0=0,
(3) one real root of multiplicity 3 and one of multiplicity

1 if �̄=0 ∧ �̄0=0 ∧ D �=0,
(4) two real roots of multiplicity 2 each if �̄=0 ∧ D=0 ∧

P<0,
(5) two real roots of multiplicity 1 each if �̄<0,
(6) one real root of multiplicity 2 and two of multiplicity

1 each if �̄=0 ∧ P<0 ∧ D<0 ∧ �̄0 �=0,
(7) four real roots of multiplicity 1 if �̄>0 ∧ P<0 ∧ D<0,

and
(8) no real roots if none of the above is satisfied.
Evaluating all these conditions with Mathematica, we find

that only cases (1) and (8) arise for valid choices of the
parameters a, k, and θ . For generic a, i.e., excluding fine-tuned
models, case (1) is satisfied if

θ = π

12
+ 2π

6
Z ∨ θ = π

4
+ 2π

6
Z (D17)

and case (8) for any other value of θ and for the fine-tuned
models. Thus, we conclude that generically, there are NL arcs
in the two sets of six symmetry-related mirror planes and no
other NLs near the TP, resulting in nnexus

a = 12. In the fine-
tuned case, some or all of those NL arcs are not present.

Because for 6/m′mm the NL arcs lie in the mirror planes,
we can find explicit expressions karc

z (k) for them by substitut-
ing the conditions on θ given in Eq. (D17) into �a,θ (k, kz ) = 0
and solving for kz:

θ = π

12
+ π

3
Z : karc

z (k) = −2a1(a1 + 6a3) − a2
4

12a1a2
k2, (D18a)

θ = π

4
+ π

3
Z : karc

z (k) = 2a1(a1 − 6a3) − a2
4

12a1a2
k2. (D18b)

We observe that limk→0 karc
z (k) = 0, such that the NL arcs

attach to the TP and from Eq. (D18) we can read off that
μ = 2 since kz(k) ∝ k2; thus, the TP is type Bq.

e. Nodal-line arcs attached to a nexus point (4/m′mm)

While there are no NL arcs attached to the TP in the
cases 4/m′mm and for class-I Hamiltonians of 6/m′mm, the
corresponding k · p models predict the possibility of NL arcs
attached to the central NL near the TP, forming a nexus
point of NL arcs [cf. Fig. 2(b)]. To see this, we consider the
corepresentation (E ; A1) of 4/m′mm. The k · p model is

Ha(k) =
5∑

i=1

aiHi(k) (D19a)

with

H1(k) =
⎛
⎝kz 0 0

0 kz 0
0 0 −2kz

⎞
⎠,

H2(k) =
⎛
⎝k2

x + k2
y 0 0

0 k2
x + k2

y 0
0 0 −2

(
k2

x + k2
y

)
⎞
⎠,

H3(k) =
⎛
⎝kxky 0 0

0 −kxky 0
0 0 0

⎞
⎠,

H4(k) =
⎛
⎝ 0 k2

y − k2
x 0

k2
y − k2

x 0 0
0 0 0

⎞
⎠,

H5(k) =
⎛
⎝ 0 0 ky − kx

0 0 −kx − ky

ky − kx −kx − ky 0

⎞
⎠. (D19b)

We consider the discriminant of the characteristic poly-
nomial of Ha,θ (k, kz ) before restricting to the leading terms,
since then any additional NLs not attached to the TP would
be lost. Since one anticipates such NLs to appear in one
of the mirror planes, we restrict the subsequent analysis
to θ ∈ {0, π/4} mod π/2. Restricting to those values of θ ,
equation �a,θ (k, kz ) = 0 has near the rotation axis analytic
solutions

θ = π

2
Z : karc

z (k) = a2
5

3a1a4
− 3a2 + a4

3a1
k2, (D20a)

θ = π

4
+ π

2
Z : karc

z (k) = 2a2
5

3a1a3
− 6a2 + a3

6a1
k2. (D20b)

As long as |a5| � |a1,3,4|, i.e., as long as the coupling of the
1D to the 2D ICR is small, these NLs attach to the central NL
close to the TP, such that the k · p expansion is still reliable
enough. In both sets of mirror planes (θ = 0 and π/4), the
position of the nexus is proportional to the same parameter
a5 ∈ R, which implies codimension 1. The two sets of NL arcs
that lie within the two inequivalent sets of mirror planes gener-
ically lie at different distance from the TP, implying nnexus

a =
4. They are of the same (different) color if sign(a4a5) = +1
(−1). Fine tuning to a5 = 0 collides both nexus points with
the type-A simultaneously [cf. inset to Fig. 12(c)].

Analogously, we find for class I 6/m′mm

θ = π

12
+ π

3
Z : karc

z (k) = 2a2
4

3a1a2
− a1 + 6a3

6a2
k2, (D21a)

θ = π

4
+ π

3
Z : karc

z (k) = 2a2
4

3a1a2
− a1 + 6a3

6a1
k2. (D21b)

Note that the expressions for karc
z (k) in the two sets of planes

are identical, such that there is only a single nexus point
with nnexus

a = 12 NL arcs in the same gap and with the same
functional dependence on k for small k (including higher-
order terms reveals that the NL arcs generically do behave
differently as a function of k in the two sets of planes). Fine
tuning to a4 = 0 collides the nexus point with the type-A TP,
such that the codimension is 1.

f. Analysis in the absence of mirror symmetry (3̄′)

Finally, we discuss the reduction of the characteristic poly-
nomial of the k · p Hamiltonian for the MPG 3̄′ to the one
resulting from 3̄′m as a concrete example of the abstract
discussion presented in Sec. IV B 3. After a reparametrization
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of the k · p model for the ICR combination (E ; A1) of 3̄′, the
Hamiltonian takes the forms

H 3̄′
a (k) =

5∑
i=1

aiHi(k) (D22a)

with

H1(k) =

⎛
⎜⎝

kx + ky kx − ky 0

kx − ky −kx − ky 0

0 0 0

⎞
⎟⎠,

H2(k) =

⎛
⎜⎝

kz 0 0

0 kz 0

0 0 −2kz

⎞
⎟⎠,

H3(k) =

⎛
⎜⎝

0 0 kx + ky

0 0 −kx + ky

kx + ky −kx + ky 0

⎞
⎟⎠, (D22b)

H4(k) =

⎛
⎜⎝

ky − kx kx + ky 0

kx + ky kx − ky 0

0 0 0

⎞
⎟⎠,

H5(k) =

⎛
⎜⎝

0 0 ky − kx

0 0 −kx − ky

ky − kx −kx − ky 0

⎞
⎟⎠,

while the k · p Hamiltonian for the same ICR combination
(E ; A1) of the MPG 3̄′m is

H 3̄′m
a (k) =

3∑
i=1

aiHi(k), (D23)

i.e., formed by only the first three terms in Eq. (D22).
In the following we show that by appropriate rotations
of k and reparametrizations, i.e., transformations of a, the
characteristic polynomial χ [H 3̄′

a (k)](E ) can be reduced to
χ [H 3̄′m

a (k)](E ), implying that the nodal structures close to the
respective TPs are qualitatively the same.

We first observe that the momentum-space coordinate
transformation k′ = Rz(−θ1)k, where Rz(θ ) denotes a rotation
around the kz axis about the angle θ , with

θ1 = arctan
(a5

a3

)
, (D24)

where (i) a3H3(k) + a5H5(k) to

a3H3(Rz(θ1)k′) + a5H5(Rz(θ1)k′) = a′
3H3(k′) (D25)

with a′
3 =

√
a2

3 + a2
5, (ii) leaves H2(k) invariant, and (iii)

transforms a1H1(k) + a4H4(k) to

a′
1H1(k′) + a′

4H4(k′) (D26)

with (a′
1, a′

4) = R(−θ1)(a1, a4), where R(θ ) ∈ SO(2) is the
2 × 2 rotation matrix about the angle θ . Therefore, we find

that

H 3̄′
a (Rz(θ1)k′) = H 3̄′

a′ (k′) (D27)

with a′ = (a′
1, a2, a′

3, a′
4, 0).

Next, we compute the characteristic polynomial of
H 3̄′

a′ (k′):

χ
[
H 3̄′

a′ (k′)
]
(E )

= 2(a′
3)2(k′)3[(a′

1 − a′
4) sin(3θ ′) − (a′

1 + a′
4) cos(3θ ′)]

+ 2E [(a′
1)2 + (a′

3)2 + (a′
4)2](k′)2

+ 2a′
2[2(a′

1)2 − (a′
3)2 + 2(a′

4)2](k′)2k′
z

+ 3E (a′
2)2(k′

z )2 − 2(a′
2)3(k′

z )3 − E3. (D28)

Another coordinate transformation k′′ = Rz(−θ2)k′ with

θ2 = 1

3
arctan

(
a′

1

a′
4

)
(D29)

transforms the first term in Eq. (D28) to

2(a′
3)2(k′′)3a′

1

√
1 +

(
a′

4

a′
1

)2

[sin(3θ ′′) − cos(3θ ′′)], (D30)

while leaving all the other terms invariant. Setting a′′ =
(a′′

1, a2, a′
3, 0, 0) with

a′′
1 = sign(a′

1)
√

(a′
1)2 + (a′

4)2

= sign(a1a3 + a4a5)
√

a2
1 + a2

4, (D31)

we arrive at

χ
[
H 3̄′

a′ (Rz(θ2)k′′)
]
(E ) = χ

[
H 3̄′

a′′ (k′′)
]
(E ), (D32)

which is the characteristic polynomial obtained from
H 3̄′m

b (k′′) with

b = (
sign(a1a3 + a4a5)

√
a2

1 + a2
4, a2,

√
a2

3 + a2
5

)
. (D33)

We conclude that in the rotated coordinates k′′ the char-
acteristic polynomial of the leading-order k · p model for
3̄′ is, up to reparametrization, identical to the characteristic
polynomial obtained from the leading-order k · p model for
3̄′m. Any properties that only depend on the characteristic
polynomial, which include nodal structures such as TPs and
NL arcs attached to TPs, are therefore the same. Therefore,
we find that TPs on HSLs with little cogroup 3̄′ are always
type Bl with nnexus

a = 6 and μ = 1.

APPENDIX E: DATA ON MATERIAL EXAMPLES

In this Appendix we provide figures supporting the re-
sults in Table V that are not already included in the main
text (see Figs. 14–32). The presented data clarify the types
and values for nnexus

a and μ listed in the table. All the first-
principles data and the code used to analyze them is published
in [63].
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FIG. 14. Nodal-line structure of Na2LiN near the type-A triple point on the � line with little cogroup 4/m′mm. (a) Band structure along
lines of symmetry. The triple point is indicated by a yellow dot and arrow and the bands forming the triple point are labeled by their irreducible
corepresentations. (b) Brillouin zone (boundary in gray) with points and lines of symmetry (black dashed lines) and the two inequivalent
mirror planes (orange and purple planes). (c) Size of the lower (red) and upper (blue) gaps in the two mirror planes shown in (b) encoded by
the intensity of the color (with a cutoff at a gap size of 0.01 eV, i.e., gaps larger than that are shown in white). The triple point (yellow) and the
central nodal line are emphasized by appropriately colored overlays.

FIG. 15. Nodal-line structure of P near the type-Bl triple point on the � line with little cogroup 3̄′m. The organization of the panels is in
one-to-one correspondence with Fig. 14 with the difference that there is only one mirror plane. The cutoff on the gap size is 0.1 eV. Due to the
threefold rotational symmetry, we conclude that nnexus

a = 6.

FIG. 16. Nodal-line structure of AlN near the type-A triple point at ETP = −0.28 eV on the � line with little cogroup 6mm. The
organization of the panels is in one-to-one correspondence with Fig. 14 and the cutoff on the gap size is 0.05 eV. Note the occurrence of
the nearby nexus of nnexus

a = 12 (due to the sixfold rotational symmetry) blue nodal-line (NL) arcs with μ = 2 in (c). The inset of (c) shows
the NL structure of the minimal k · p model given in Appendix D 2 e with parameters tuned to qualitatively reproduce the situation in AlN.
As expected, the k · p model does not reproduce the different curvature of the NL arcs in the two inequivalent sets of mirror planes which is
clearly visible in the data. As remarked upon in Sec. III B 2 this would be reflected in terms of higher order in kx, ky in the k · p expansion. Our
theoretical arguments suggest that two parameters need be tuned to collide the nexus with the type-A TP.
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FIG. 17. Nodal-line structure of AlN near the type-Bq triple point at ETP = −0.85 eV on the � line with little cogroup 6mm. The
organization of the panels is in one-to-one correspondence with Fig. 14 and the cutoff on the gap size is 0.05 eV. Due to the sixfold rotational
symmetry, we conclude that nnexus

a = 12.

FIG. 18. Nodal-line structure of Li4N near the type-A triple point on the � line with little cogroup 6̄′m2′. The organization of the panels is
in one-to-one correspondence with Fig. 14 with the difference that there is only one mirror plane. The cutoff on the gap size is 0.01 eV. Note
the occurrence of a nearby nexus of nnexus

a = 6 (due to the threefold rotational symmetry) blue nodal-line arcs with μ = 2 in (c). Our theoretical
arguments suggest that only a single parameter needs be tuned to collide the nexus with the type-A TP.

FIG. 19. Nodal-line structure Na2O near the type-A triple point on the � line with little cogroup 6̄′m2′. The organization of the panels is
in one-to-one correspondence with Fig. 14 with the difference that there is only one mirror plane. The cutoff on the gap size is 0.01 eV. Note
again the occurrence of a nearby nexus of nnexus

a = 6 (due to the threefold rotational symmetry) blue nodal-line arcs with μ = 2 in (c). Our
theoretical arguments suggest that only a single parameter needs be tuned to collide the nexus with the type-A TP.
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FIG. 20. Nodal-line structure of Li2NaN near the type-A triple point on the � line with little cogroup 6/m′mm. The organization of the
panels is in one-to-one correspondence with Fig. 14 and the cutoff on the gap size is 0.02 eV. Our recent work [45] used this material to
illustrate a relation between type-A TPs of spinless PT -symmetric crystals to multiband nodal links.

FIG. 21. Nodal-line structure of TiB2 near the type-A triple point at ETP = 0.57 eV on the � line with little cogroup 6/m′mm. The
organization of the panels is in one-to-one correspondence with Fig. 14 and the cutoff on the gap size is 0.05 eV. We do not identify a
nexus point in this case; the nodal lines discernible in the right part of (c) seem to connect to the high-symmetry point K such that they cannot
be considered to be near the triple point.

FIG. 22. Nodal-line structure of Na3N near the type-Bq triple point at ETP = −93 meV on the � line with little cogroup 6/m′mm. The
organization of the panels is in one-to-one correspondence with Fig. 14 and the cutoff on the gap size is 0.01 eV. Due to the sixfold rotational
symmetry, we conclude that nnexus

a = 12.
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FIG. 23. Nodal-line structure of C3N4 (SG 215) near the type-A triple point on the � line with little cogroup 4̄′2′m. The organization of
the panels is in one-to-one correspondence with Fig. 14 with the difference that there is only one mirror plane. The cutoff on the gap size is
0.02 eV. We do not identify a nexus point in this case; the nodal lines discernible in (c) connect to the high-symmetry point � such that they
cannot be considered to be near the triple point.

FIG. 24. Nodal-line structure of ZrO near the type-A triple point at ETP = 0.12 eV on the � line with little cogroup 4/m′mm. The
organization of the panels is in one-to-one correspondence with Fig. 14 and the cutoff on the gap size is 0.02 eV. Note the extremely close
adjacency of the triple point to two nexus points of nnexus

a = 4 (due to the fourfold rotational symmetry) nodal-line arcs each. According to
our theoretical arguments, this is achieved by tuning a single model parameter. Furthermore, observe that the two nexus points are of different
colors (in contrast to Fig. 12), suggesting sign(a3a4) = −1 in the k · p model in Eq. (D20).

FIG. 25. Nodal-line structure of ZrO with 5% uniaxial tensile strain in z direction near the type-A triple point at ETP = 2.0 eV on the �

line with little cogroup 4/m′mm (cf. Fig. 12 for the same data in ZrO without strain). Size of the lower (red) and upper (blue) gaps in the
two mirror planes shown in Fig. 12(b) encoded by the intensity of the color (higher color saturation implies smaller energy gap between the
corresponding pair of bands). The gap is only plotted up to a cutoff of 0.02 eV such that white color indicates a gap larger than that. The
triple point (yellow) and the central nodal line are emphasized by appropriately colored overlays. In contrast to Fig. 12, we recognize two
separate nexus points (indicated by black disks) not coinciding with the triple point. Thus, we conclude that the triple point is indeed type A
and (due to the fourfold rotational symmetry) that nnexus

a = 4.
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FIG. 26. Nodal-line structure of SiO2 near the type-A triple point on the � line with little cogroup 4̄′. The organization of the panels is in
one-to-one correspondence with Fig. 14 with the difference that the shown planes are not mirror planes. The cutoff on the gap size is 0.005 eV.
The little cogroup 4̄′ contains neither a vertical mirror symmetry nor PT symmetry, such that nodal lines away from the rotation axis cannot
be stabilized. We have performed DFT calculations in planes perpendicular to the central line (see [63]) and verified that.

FIG. 27. Nodal-line structure of Li4HN near the type-A triple point on the � line with little cogroup 4/m′. (a) Band structure along lines
of symmetry. The triple point is indicated by a yellow dot and arrow and the bands forming the triple point are labeled by their irreducible
corepresentations. (b) Brillouin zone (boundary in gray) with points and lines of symmetry (black dashed lines). There are no mirror planes in
this space group. (c) Size of the lower (red) and upper (blue) gaps, encoded by the intensity of the color (with a cutoff in gap size at 0.02 eV),
in two horizontal planes (at fixed kz) one slightly below (left) and one slightly above (right) the triple point. We find that no nodal-line arcs
attach to the triple point, but we show the attachment of nodal-line arcs to a nexus point in Fig. 28.

FIG. 28. Nodal-line structure of Li4HN near the nexus point on the � line with little cogroup 4/m′. Size of the lower (red) and upper (blue)
gaps, encoded by the intensity of the color (with a cutoff in gap size at 0.02 eV), in horizontal planes at kz ∈ {0.48, 0.5, 0.52, 0.54, 0.56}. We
observe that four red nodal-line arcs attach to the nexus point lying on the red central nodal line, such that nnexus

a = 4. Furthermore, the nodal
lines’ symmetric arrangement indicates a quadratic attachment to the nexus point and therefore μ = 2.
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FIG. 29. Nodal-line structure of MgH2O2 near the type-Bl triple point on the P line with little cogroup 3̄′. The organization of the panels is
in one-to-one correspondence with Fig. 14 with the difference that the shown plane is not a mirror plane. The cutoff on the gap size is 0.05 eV.
Instead, we have performed DFT calculations in planes perpendicular to the central line and determined the approximate planes in which nodal
lines attaching to the triple point appear (see [63]). Here that plane is the �KH plane and its three mirror-symmetry-related copies, implying
nnexus

a = 6.

FIG. 30. Nodal-line structure of Li2Co12P7 near the type-A triple point on the � line with little cogroup 6̄′. The organization of the panels
is in one-to-one correspondence with Fig. 14 with the difference that the shown planes are not mirror planes. The cutoff on the gap size is
0.01 eV. The little cogroup 6̄′ contains neither a vertical mirror symmetry nor PT symmetry, such that nodal lines away from the rotation axis
cannot be stabilized.

FIG. 31. Nodal-line structure of C3N4 (SG 176) near the type-Bq triple point at ETP = −9.3 eV on the � line with little cogroup 6/m′

The organization of the panels is in one-to-one correspondence with Fig. 14 with the difference that the shown plane is not a mirror plane.
The cutoff on the gap size is 0.05 eV. Using additional DFT calculations in planes perpendicular to the central nodal line (see [63]), we have
determined that six nodal lines approximately lie in the planes indicated in (b), each implying nnexus

a = 12. The green plane is spanned by k�A

and k = 0.2k�M + 0.11k�M′ , where M ′ is the M point rotated by π

3 , and the red plane by k�A and k = 0.02k�M + 0.2k�M′ .
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FIG. 32. Nodal-line structure of C3N4 (SG 176) near the type-A triple point at ETP = −2.6 eV on the � line with little cogroup 6/m′. The
organization of the panels is in one-to-one correspondence with Fig. 27 (but with a cutoff of 0.02 eV) and again there are no nodal-line arcs
connecting to the triple point.
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